61854 (Становление радиотехнической теории: от теории к практике. На примере технических следствий из открытия Г. Герца), страница 5

2016-08-02СтудИзба

Описание файла

Документ из архива "Становление радиотехнической теории: от теории к практике. На примере технических следствий из открытия Г. Герца", который расположен в категории "". Всё это находится в предмете "история науки и техники" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "история техники" в общих файлах.

Онлайн просмотр документа "61854"

Текст 5 страницы из документа "61854"

В радиотехнических системах постепенно выделились качественно иные, нежели в электротехнике, конструктивные блоки-подсистемы: колебательные и связанные контуры, фильтрующие цепи, усилители низкой, промежуточной и высокой частоты, модуляторы, детекторы, мультивибраторы, генераторы, ограничители, линии задержки и т.п. Эти конструктивные блоки, однако, могут иметь различную физическую основу, не обязательно сводимую к электротехническим элементам. Вокруг каждого такого блока группируются особые теоретические знания. Другими словами эти блоки сами представляют собой различные частные теоретические схемы, являющиеся, в свою очередь, обобщением конструктивных схем конкретных радиотехнических устройств, Например, главное свойство дроссельных фильтров (низких частот) и фильтров верхних частот - "явно выраженное предпочтение или подавление определенных диапазонов частот. Именно поэтому их называют "сепараторами" или "фильтрами". Вагнер выделил четыре основных типа фильтров: низких частот, высоких частот, полосовой фильтр и полосовой заграждающий фильтр. Кэмпбелл независимо от Вагнера пришел к аналогичным результатам, но опубликовал их лишь в 1922 г. Частотные характеристики этих цепей, состоящих из катушек индуктивности и конденсаторов (реактивных четырехполюсников) могут быть рассчитаны с помощью теории Вагнера. Возникший при этом "анализ электрических цепей" был настолько успешным, что стал применяться для расчета акустических и других механических колебательных систем. В то время как техника связи еще несколько десятилетий прежде должна была заимствовать аналогии из других научно-технических дисциплин, теперь ее теоретический аппарат настолько расширился, что она смогла возвратить полученное с процентами" [63]. Все эти блоки радиотехнических систем могут быть исследованы едиными методами в специально развитой для этого теории четырехполюсников. Монолитную или твердотельную схему, изготовленную как единый блок с помощью планарной технологии, можно теоретически представить как электронную схему, состоящую из резисторов, конденсаторов и т.п. Например, четырехполюсную интегральную схему можно представить в виде линии передачи с дискретными или распределенными элементами, т.е. состоящей из двухполюсников (см. рис. 18) [64]. Эта модель представляет собой схематическое "описание в форме соответствующей схемы замещения".

На рис. 18 а представлена дискретная схема замещения "сначала для длины р" (см. рис. 18 в). "В данном случае индуктивность и омические потери цепи электрического тока высокой частоты учитываются с помощью введения элементов L и R и за счет непроводимости диода в одном направлении, для рассматриваемой полосы высоких частот через последовательное включение зависимой от напряжения емкости перехода C(U) и электронной проводимости G. Периодическая нелинейная линия передачи (NLTL) в целом [см. рис. 18 в] представляется с помощью цепочки нескольких таких схем замещения, которые также обозначают ячейки", что на рис. 18 в показано пунктиром. "При пренебрежении сопротивлением элементов циклическое повторение подобных ячеек (с чередованием последовательного и параллельного включения ветвей) приводит к схеме замещения в форме многозвенной LC-цепи с характеристикой фильтра низких частот. Для вывода волнового уравнения примененной здесь модели примем теперь, что при распространении волн по нелинейной линии передачи длина любых появляющихся в ней волн является достаточно большой по сравнению с длиной периода р" (рис. 18 в). Тогда схема замещения с распределенными элементами на рис. 18 б "будет полезной для описания нелинейного распространения волн по всей нелинейной линии передачи. На этой схеме замещения описывается с помощью индуктивности, последовательно включенного резистора, а также зависимой от напряжения емкости перехода и электронная проводимость проводника через соответствующие проводящие пластины" [65].

Теоретическое исследование схем с включенными в них реактивными элементами (сопротивлениями, конденсаторами, катушками индуктивности, трансформаторами) позволяет устанавливать соотношения между силой тока и напряжением в какой-либо электрической цепи в соответствии с правилами, сформулированными Кирхгофом и Гельмгольцем. Распространение этих правил на случай переменного тока сделало "принципиально возможными расчеты электрических цепей, содержащих не только [омические] сопротивления, но и конденсаторы (емкости) и катушки индуктивности (индуктивности)" [66]. Последние зачастую стали называть соответственно емкостными и индуктивными сопротивлениями. Любой проводник (например, кусок медной проволоки) может быть представлен на эквивалентной схеме для цепи постоянного тока омическим сопротивлением. Для цепи переменного тока низкой частоты должно быть добавлено индуктивное сопротивление, для переменного тока высокой частоты - еще и емкостное сопротивление. В русском языке термин "сопротивление" (или эквивалентное сопротивление) означает в первую очередь идеализированный элемент (абстрактный объект технической теории - физическую величину) идеализированной электрической цепи (поточной схемы) в отличие от "сопротивления" как конструктивного элемента (радиодетали) реальной электрической цепи (структурной, или конструктивной схемы), называемого "резистором" (от англ. "resistor"). Таким образом одна и та же реальная электрическая цепь, состоящая из резисторов, конденсаторов и катушек индуктивности, соединенных между собой проволочными проводами, может быть представлена для разных режимов функционирования этой электрической цепи различными эквивалентными схемами: для постоянного тока достаточно представить ее в виде (поточной) эквивалентной схемы - схемы замещения, состоящей только из омических сопротивлений. Для переменного тока низкой частоты к ним добавляются индуктивные сопротивления, а на высокой частоте следует учитывать и емкостное сопротивление данной цепи.

На примере последовательного соединения омического сопротивления, индуктивности и емкости видно, каким образом могут строиться эквивалентные схемы пассивного двухполюсника (последовательного колебательного контура, изображенного в виде двухполюсника), где индуктивность заменяется индуктивным сопротивлением, а емкость - емкостным сопротивлением (см. рис. 19) [67].

Для проведения расчетов с использованием законов Ома и Кирхгофа эквивалентная схема должна быть сведена к еще более простой эквивалентной (функциональной, или математической) схеме, т.е. определенным образом идеализированной электрической цепи - схеме замещения более высокого уровня абстракции [68]. Первые экспериментальные и теоретические результаты были получены Омом еще в 1824 г. Всего три года спустя позже он издал книгу под названием "Математически обработанные гальванические цепи", которая содержит все существенные законы электрических цепей. Однако он интересовался в первую очередь открытием физических закономерностей, а поэтому не использовал свои достижения для расчета больших электрических цепей. Гораздо больший вклад в становление теории расчета электрических цепей внес Кирхгоф. Он сформулировал в своей первой работе 1845 г. названные его именем законы в несколько более общей форме, чем у Ома. Собственно, рож дение теории электрических цепей следует, однако, отнести к 1847 г., когда Кирхгоф опубликовал свою работу под названием "О решении уравнений, с помощью которых проводится исследование линейного распределения гальванических токов". В этой работе впервые дается методика анализа электрических цепей с применением теории графов. В работах «О сохранении силы» (1847) и «О некоторых законах распределения электрических токов в телесных проводниках с применением для опытов с животным электричеством» (1853) Гельмгольц заложил основы динамической теории электрических цепей и «теории двухполюсников». Окончательную форму теория приобрела благодаря Флемингу и Штейнмецу, перенесшим на «линейные RLC-цепи с синусоидальным возбуждением» методы, развитые для линейных электрических цепей, состоящих из омических сопротивлений [69].

Любой реактивный двухполюсник можно представить в виде омического сопротивления, индуктивности и емкости, а можно - в виде комплексного сопротивления (Z). Активный двухполюсник может быть заменен эквивалентной ЭДС с внутренним сопротивлением z. Выделяя в электрической цепи замкнутые контуры и производя соответствующие замены активных и реактивных двухполюсников, можно получить систему линейных уравнений для всех токов и напряжений в сети (см. рис. 20) [70]. Число независимых контуров определяется соотношением n - р - q + 1, где р - число ветвей в графе, представляющем сеть, q - число его узлов. В каждом контуре вводятся свои токи. Первое правило Кирхгофа требует равенства нулю суммы всех токов в каждом узле графа, второе - равенство нулю суммарного падения напряжения в каждом контуре.

Например, схема, представленная на рис. 21 я, может быть сведена к графу, имеющему 3 узла (q = 3) и 5 ветвей (п = 5) (рис. 21 б) [71].

"Каждому физическому процессу будет точно соответствовать определенная математическая операция. Электрическая цепь, состоящая из омических сопротивлений имеет при данных ЭДС лишь одну единственную схему распределения напряжений или токов, т.е. ее линейные уравнения имеют единственное решение. Такая однозначность выводится уже из законов Кирхгофа, которые в свое время быстро приобрели права гражданства.

Однако всё, о чем говорилось выше, позволяет лишь анализировать схемы. Техническая же теория только тогда может считаться построенной, если в ней становится возможным также синтез схем - создание нового технического устройства на основе имеющихся конструктивных элементов. Очень важно теоретически рассчитать основные параметры нового технического устройства и проимитировать его функционирование. Именно таким образом Кэмпбелл, работавший тогда в белловских телефонных лабораториях, и Вагнер, сотрудник германского почтамта, смогли создать первый эскиз теории синтеза LC-фильтров, в общих чертах завершенной несколько позже Форестом и Дарлингтоном в США [72].

Радиотехническая система может быть представлена в виде цепочки блоков, каждый из которых преобразует один из параметров электромагнитных колебаний. К таким блокам относятся: генератор (преобразует какой-либо вид энергии в электромагнитные колебания), модулятор (позволяет изменять соответствующую характеристику электромагнитного колебания по определенному закону, скажем, амплитуду, частоту или фазу), фильтр (отфильтровывающий помехи), усилитель (устройство, увеличивающее колебания только по амплитуде, их фазовые и частотные соотношения должны передаваться без изменений) и т.д. В теории четырехполюсников разрабатывается специальный математический аппарат, основанный на матричном исчислении, доказываются специальные теоремы, анализируются различные типы четырехполюсников, даются их обобщенные уравнения и параметры. Теория четырехполюсников дает возможность осуществлять анализ и синтез различных многокаскадных радиотехнических устройств на теоретическом уровне и транслировать на уровень инженерной деятельности важнейшие результаты.

Таким образом в теоретической радиотехнике динамическая физическая картина электромагнитных взаимодействий (колебаний, волн, полей) совмещается со структурным изображением радиотехнических систем, в которых эти естественные (в данном случае физические, точнее электродинамические) процессы протекают и искусственно поддерживаются. Именно их органическое сочетание и образует обобщенную теоретическую схему технической науки.

На первых этапах своего развития радиотехника отличалась скорее описательными, чем расчетными методами исследования. Однако о появлении технической науки можно говорить в полной мере лишь тогда, когда в ней построена математизированная техническая теория. В ней должны быть выработаны процедуры перехода от структурных теоретических схем к "процессуальным" и функциональным схемам и обратно (другими словами процедуры анализа и синтеза). Только после того, как в технической науке заданы процедуры теоретического синтеза технических систем, которые позволяют распространить полученные теоретические результаты на целый класс гипотетических технических систем (с возможностью выработки на их основе практических методических рекомендаций для еще неосуществленной инженерной деятельности), построенная в этой технической науке обобщенная теоретическая схема может рассматриваться как универсальная относительно данного класса технических систем. Другими словами, именно тогда она получает статус "универсальной" Теоретической схемы определенной научно-технической дисциплины (точнее/ "семейства" такого рода дисциплин) и соответствующего им вида инженерйой деятельности.

С 1895 по 1905 гг. беспроводная телеграфия развивалась преимущественно эмпирически. Ф. Браун - сторонник развития университетской технической науки - пытался открыть в Страсбургском университете технический факультет. Он считал, что с открытием технического факультета в рамках университета и с помощью нескольких успешно работающих вне его электротехнических предприятий можно развить экспериментальную и педагогическую практику как новую техническую науку, которую еще предстоит создать, с ясно определенными целями и содержанием обучения. Он ориентировался не на теорию, а на необходимость технических применений и разработал программу модернизации физики как технической физики. К сожалению, этому проекту не было суждено осуществиться. Техническая физика вела в университетах лишь своего рода теневое существование, хотя большинство физиков и работало в области техники [73]. Эти идеи, однако, оказали влияние не только в Германии, но и в России. Ближайшие сотрудники Брауна из России Л.И. Мандельштам и Н.Д. Папалекси стали развивать радиотехнику в России в духе идей Ф. Брауна.

Леонид Исаакович Мандельштам (1897-1944) учился на физико-математическом факультете Новороссийского университета в России, но из-за участия в студенческих волнениях вынужден был продолжить свое образование в Страсбурге, которое закончил в 1902 г. Мандельштам в 1902 г. защитил у Брауна кандидатскую диссертацию, а в зимнем семестре 1906/07 гг. получил докторскую степень. Он изучал колебания в электрическом контуре и открыл принципы слабых взаимодействий, которые до сегодняшнего дня являются весьма важными для радиотехники. Мандельштам в течение 10 лет был ассистентом Брауна. Он также работал "несколько недель на почте и в лаборатории фирмы "Сименс", чтобы изучить технику связи и телеграфии", а в 1911 г. получил постоянное место преподавателя прикладной физики. Позже ему было присвоено звание профессора.

Николай Дмитриевич Папалекси (1880-1947) "происходил из богатой семьи российского помещика в Крыму, так что у него не было необходимости работать в Страсбурге, чтобы обеспечить себе пропитание". Он защитил кандидатскую диссертацию в 1904 г., а докторскую - в 1911 г. Затем он работал приват-доцентом у Брауна. В начале Первой мировой войны Мандельштам и Папалекси как российские граждане были вынуждены покинуть Германию [74] и возвратиться в Россию. С 1923 г. они работали вместе в научном отделе Центральной радиолаборатории Электротехнического треста заводов слабого тока в Ленинграде. Мандельштам с 1924 г. стал заведовать кафедрой теоретической физики в Московском университете. Папалекси оставался сначала в Ленинграде, работая профессором в Политехническом университете, а с 1934 г. перешел на работу в Физический институт (и, кроме того, в Электротехнический институт) Академии наук СССР. В 1937 г. Мандельштам также перешел на работу в Физический институт, где проводил исследования в области оптики, радиофизики, радиотехники и теоретической физики (часто совместно с Папалекси). Мандельштам и Папалекси были избраны действительными членами Академии наук [75].

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5193
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее