12973 (Цитоскелет сигнализирует), страница 2

2016-08-02СтудИзба

Описание файла

Документ из архива "Цитоскелет сигнализирует", который расположен в категории "". Всё это находится в предмете "биология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "биология и химия" в общих файлах.

Онлайн просмотр документа "12973"

Текст 2 страницы из документа "12973"

Рис. 11. Структура молекулы кальмодулина

Как же такое простое вещество, как ион кальция, может регулировать активность белков? Выяснилось, что он связывается внутри клетки со специальным белком кальмодулином (рис. 11). Этот достаточно крупный белок, состоящий из 148 аминокислотных остатков, как и цАМФ, обнаружен практически во всех изученных клетках.

Рис. 12. Механизм активации Ca2+-зависимого ферментау

Присоединяющийся к кальмодулину кальций активирует его аналогично тому, как цАМФ стимулирует работу протеинкиназ. Именно так, например, происходит инициация сокращения гладкой мускулатуры. Высвободившиеся в ответ на внешний сигнал ионы кальция связываются с кальмодулином, который после этого взаимодействует с ферментом киназой и активирует ее (рис. 12). Комплекс киназа–кальмодулин связывается с актином, приводя его в рабочее состояние. В результате гладкие мышцы сокращаются. Опосредованный кальцием путь сигнала к поперечно-полосатой скелетной мускулатуре более длителен, зато гладкие мышцы в отличие от поперечно-полосатых могут значительно дольше находиться в сокращенном состоянии. Именно поэтому мускулы-замыкатели двустворчатых раковин могут часами сжимать свои створки.

В клетках разных тканей активированный кальцием кальмодулин связывается с различными белками-мишенями, влияя на их работу. Такое поведение кальмодулина вызывает вопрос, который возникал и при обсуждении влияния цАМФ и активируемой им протеинкиназы на активность белков, а именно: почему в разных клетках одни и те же активированные кальцием молекулы кальмодулина присоединяются к различным белкам?

Загадка стероидных гормонов

Совершенно аналогичная проблема возникает и при изучении гидрофобных стероидных гормонов, структура которых похожа на структуру жирорастворимого вещества холестерина. Термин «гидрофобный» указывает на их плохую растворимость в воде (от гр. hydor – вода и phobos – страх). Такие гормоны, будучи жирорастворимыми, легко проходят через состоящие из фосфолипидов клеточные мембраны. Оказавшись внутри клетки, стероидные гормоны связываются с соответствующими рецепторами. Рецепторы изменяют свою пространственную форму (конформацию) и, проникая в ядро через его ядерную мембрану, соединяются с определенными последовательностями нуклеотидов в ДНК, тем самым «включая» или «выключая» транскрипцию определенных генов. Такая последовательность событий доказана для стероидного гормона кортизона – его комплекс с рецептором связывается с соответствующим единственным геном, который удалось выделить и клонировать. Какая цепь превращений вызывается действием других гормонов и как происходит их специфическая «посадка» на определенный участок ДНК, во многом пока не ясно.

Не ясно и другое. Показано, что один и тот же гормон, связываясь со своим специфическим рецептором, вызывает различные ответы в разных клетках.

Забытое пространство

Число разнообразных сигналов, которые клетка может получать извне, очень велико. Это слабые электрические импульсы, гормоны, медиаторы, различные ростовые факторы и другие воздействия. Количество же вторичных мессенджеров, с помощью которых все это множество внешних сигналов влияет на внутриклеточные процессы, удивительно мало. Это цАМФ, ионы кальция, специальные молекулы типа высокофосфорилированных нуклеотидов (РРАРР – фосфат-фосфат-аденин-фосфат-фосфат) или инозитолтрифосфат.

Как же с помощью этих вторичных посредников клетка умудряется понять, какие именно сигналы их вызвали и каким образом необходимо на них реагировать? На этот вопрос трудно ответить прежде всего потому, что все клеточные компоненты (молекулы и ансамбли молекул) строго определенным образом скомпонованы в пространстве клетки.

Изучая по отдельности детали сложного часового механизма, который устроен несравнимо проще клетки, нелегко понять, как все эти шестеренки, маховички и пружины влияют друг на друга в работающем хронометре. Между тем именно такую задачу приходится решать исследователям клетки. Чтобы понять существо отдельных явлений или процессов, нужно разрушить клетку, выделить из нее белки, изучить их свойства и только потом попытаться установить их роль в том или ином процессе. При этом допускаются упрощения. Так, обычно принимается, что водорастворимые белки свободно диффундируют в цитоплазме наподобие крупинок в супе и никак не связаны между собой. Между тем само устройство некоторых клеточных органелл предполагает, что комплексы взаимодействующих ферментов должны образовывать специально сконструированные архитектурные ансамбли. Например, множество белков, катализирующих окислительные реакции в дыхательной цепи, располагаются на внутренних мембранах митохондрий в строго определенном порядке. Именно такая пространственная организация позволяет им с успехом осуществлять передачу богатых энергией электронов.

Но клетка содержит множество белков, связи которых друг с другом более лабильны и изменчивы во времени. По-видимому, для регуляции их пространственного взаимодействия требуется не прочное «заякоривание», а более тонкий и гибкий механизм. В частности, обеспечивать такую пространственную организацию могут белки цитоскелета. Они образуют настолько ажурные и динамичные структуры, что их изучение стало возможным лишь относительно недавно.

Строительные леса цитоскелета

Первые свидетельства сложности внутренней архитектуры цитоплазмы были получены еще в XIX в., когда в результате серебрения срезов тканей в клетках стали различать явственно проступающие сетеподобные структуры. Однако к изучению их состава и устройства удалось приступить лишь в 60-е гг. XX в., когда в биологии стали широко применяться такие тонкие методы исследований, как электронная микроскопия, ультрацентрифугирование и электрофорез.

В цитоплазме были обнаружены сложные структуры, образующие цитосклет. Выяснилось, что тяжи цитоскелета построены в основном из тонких (диаметром 7 нм) актиновых филаментов и длинных, толстых (диаметром 25 нм) и жестких микротрубочек, состоящих из - и -тубулина. Эти белки оказались очень лабильными, способными формировать легко изменяющиеся динамичные пространственные структуры. В частности, глобулярные белки актина не только легко и быстро полимеризуются в длинные вытянутые нити – филаменты (рис. 13). Они взаимодействуют с целым набором других вспомогательных белков, в результате чего возникает определенным образом организованная пространственная сеть филаментов.

Рис. 13. Организация глобулярных молекул актина в актиновом филаменте

Рис. 14. Создание сети с помощью молекул филамина

Вспомогательные белки филамин и -актинин выполняют функции своеобразных скобок, сшивающих филаменты актина в структуру, напоминающую рыболовную сеть (рис. 14). Белок фибрин связывает актиновые филаменты в толстый пучок вроде веника или снопа. Тропомиозин стабилизирует уже сформированные тяжи актина (рис. 7). Гельзолин действует словно секатор, разрезая длинные филаменты на отдельные кусочки. Профилин, как нянька, сопровождает актиновые глобулы к местам их присоединения к образовавшимся ранее фрагментам нитей, виллин служит инициатором полимеризации актина в растворе, а тимозин, наоборот, не позволяет глобулярному актину соединятся в нити. Наконец, миозин способен активно подтягивать филаменты навстречу друг другу (рис. 5). Таким образом актиновые филаменты можно уподобить арматуре строительных лесов, которые можно резать, надставлять и соединять под любыми углами и в любых положениях. Их можно также соединять вместе, создавая тянущее напряжение всей конструкции.

Тубулин оказался белком не менее замечательным, чем актин. Образованные им микротрубочки способны разбираться с одного конца и собираться с другого. Белок нексин помогает им объединяться в сложные ансамбли, а белок динеин может скользить по тубулиновой микротрубочке, как дрезина по рельсам. Поскольку динеин в то же время способен жестко прикрепляться к микротрубочке другой своей стороной, это обеспечивает взаимное скольжение трубочек друг относительно друга.

В некоторых случаях филаменты и микротрубочки образуют четкий шаблон для построения определенных органоидов. Так происходит, например, в развивающемся сперматозоиде: актиновые филаменты формируют спиралевидную конструкцию, структуру которой потом, после ее распада, в точности повторяют возникшие на этом месте митохондрии. Высокоорганизованные летательные мышцы насекомых строятся в эмбриогенезе по тубулиновым шаблонам.

Помимо актиновых филаментов и тубулиновых микротрубочек в состав цитоскелета входят также промежуточные филаменты (диаметром 7–11 нм), которые исследованы значительно хуже, но, как полагают, являются не менее лабильными образованиями.

Белки цитоскелета принимают деятельное участие в движении клетки, поскольку для его осуществления требуется постоянное изменение ее формы. Мышечное сокращение, амебоидное движение, перешнуровывание клетки во время деления, фагоцитоз основаны на взаимодействии актина и миозина, а биение ресничек и жгутиков сперматозоидов происходит благодаря скольжению микротрубочек друг относительно друга.

Белки цитоскелета незаменимы там, где надо создать сложную пространственную и относительно стабильную форму. Например, внутри микроворсинок эпителиальных клеток кишечника и почек проходят пучки актиновых филаментов. Принципиально такие же, но гораздо более мощные пучки находятся в стереоцили волосковых клеток в улитке внутреннего уха. Похожая на двояковогнутую шайбу форма эритроцита поддерживается благодаря взаимодействию актина с белками спектрином и анкирином.

Подобные примеры можно было бы множить, однако важнее задаться вопросом: только ли к фиксации формы клетки сводится роль ее цитоскелета? Может быть, он играет существенную роль в образовании функциональных комплексов водорастворимых ферментов, а образованная цитоскелетом сеть служит для приема и передачи информации? Исходя из физико-химических свойств белков цитоскелета, это, в принципе, возможно. Вспомните ловчую сеть пауков. Она не только образует хитрые ловушки для насекомых. Натяжение и дрожание паутинок сигнализируют их конструктору о пойманной добыче или непредвиденной поломке ажурной конструкции.

Паутина сигнализирует

Указания на роль цитоскелета в передаче информации в клетки начали накапливаться с 1980-х гг. К этому времени уже было известно явление так называемого кеппинга.

Вернемся к началу этой статьи. Когда сигнальные вещества – лиганды – взаимодействуют со своими рецепторами, образовавшиеся комплексы собираются на поверхности клетки в компактную группу. Затем клеточная мембрана изгибается и комплексы лигандов с рецепторами втягиваются внутрь клетки (интернализируются), где происходит их утилизация. В этом процессе принимает участие актин, филаменты которого связываются с внутриклеточной частью пронизывающего мембрану рецептора. Играет ли при этом актин роль только лишь стягивающей сеточки, необходимой для образования на мембране впадины, или же его роль в этом процессе более сложна, остается пока не выясненным.

Актиновые филаменты способны прикрепляться не только к рецепторам, но и к клеточной мембране в районе так называемых фокальных контактов, образующихся в местах соприкосновения клетки с субстратом. Являются ли эти контакты лишь местами крепления к субстрату или же они одновременно информируют клетку об окружающих ее молекулах, частицах?

Проведенная выше аналогия устройства цитоскелета с сетью паутины становится почти наглядной, если учесть, что микротрубочки и промежуточные филаменты тянутся от ядра к периферии клетки. Из исследований культивируемых вне организма клеток хорошо известно, что большинство из них при осуществлении активной работы распластываются на той или иной подложке (рис. 15). В этих условиях в клетках формируется сложная трехмерная сеть филаментов.

Рис. 15. Схема расположения актиновых филаментов в тонких пластинчатых отростках (ламеллоподиях) клеток, растущих в культуре

Эти наблюдения хорошо согласуются с данными о том, что митохондрии и лизосомы передвигаются в клетке не случайным образом, а вдоль микрофиламентов. Часть белоксинтезирующего аппарата клетки тоже связана с цитоскелетом. Если разрушить микротрубочки, то расположение таких важных органоидов как пузырьковидные элементы аппарата Гольджи, в которых проходят конечные стадии созревания готовых для экскреции белков нарушается, они оказываются размещенными в клетке случайным образом, а не в определенном порядке. Некоторые водорастворимые ферменты, участвующие в гликолизе, связаны с актиновыми филаментами. Хорошо известно, что в транспорте белков в нервных клетках также участвуют актиновые филаменты.

Следовательно, для синтеза определенных белков (а значит, и для выполнения определенных функций), клетка должна привести свой цитоскелет в рабочее состояние, которое обеспечивает необходимую пространственную организацию клеточных реакций и процессов. С этим выводом хорошо согласуется тот факт, что при различных стрессовых воздействиях клетка в первую очередь разбирает основные компоненты своего цитоскелета, а затем формирует их заново, в соответствии с реакцией на полученный сигнал. Такая перестройка обеспечивает переключение с одного режима работы на другой.

Будет ли клетка по-разному формировать свой молекулярный скелет в ответ на активацию различных поверхностных рецепторов? Опыты с фибробластами и эпителиальными клетками, распластывающимися на стекле, покрытом различными белками, дают на этот вопрос однозначный ответ.

Если на стекло нанести белок внеклеточного матрикса – фибронектин, то распластавшиеся на нем фибробласты принимают полигональную форму и в них активно формируются состоящие из актина так называемые стрессфибриллы. Другой нанесенный на стекло белок внеклеточного матрикса – ламинин – вызывает активное движение фибробластов вследствие образования у них узких спицеподобных микрошипов и плоских тонких ламеллоподий (рис. 15). Стрессфибриллы в этой ситуации не образуются вовсе. Наконец, нанесенные на стекло антитела к эпидермальному фактору роста (веществу, стимулирующему активное деление клеток кожи) вызывают в распластывающихся клетках эпидермиса образование полусфер из актина.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5192
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее