referat_endo (Эндометаллофуллерены), страница 3

2016-08-02СтудИзба

Описание файла

Документ из архива "Эндометаллофуллерены", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "химия" в общих файлах.

Онлайн просмотр документа "referat_endo"

Текст 3 страницы из документа "referat_endo"

Перестройка электронной структуры эндоэдральных металлофуллеренов, связанная с переходом валентных электронов металла на внешнюю по отношению к оболочке область, отражается на таких электронных характеристиках молекулы фуллерена, как ее потенциал ионизации и сродство к электрону. Это можно проиллю­стрировать результатами квантово-химических расчетов [36], представленными в таблице 2. Как видно, инкапсулирование атома металла в молекулу фуллерена, с одной стороны, приводит к снижению потенциала ионизации, с другой стороны, энергия сродства эндоэдралов заметно выше, чем пустых фуллеренов.

Таблица 2.

Потенциал ионизации IP, сродство к электрону EA эндоэдральных и полых фуллеренов.

Фуллерен

IP,

эВ

EA,

эВ

Заряд на атоме металла

нейтральной молекуле

катионе

Анионе

Sc@C82

Y@C82

La@C82

C60

C70

C82

6,45

6,22

6,19

7,78

7,64

6,96

3,08

3,20

3,22

2,57

2,69

3,37

2,16

2,59

2,92

2,18

2,61

2,97

2,18

2,60

2,90

Основные отличия эндоэдральных металлофуллеренов от полых фуллереновых молекул связаны с двумя главными особенностями их структуры. Первая из этих особенностей обус­ловлена нецентральным положением инкапсулирован­ного атома металла в клетке фуллерена, вследствие чего молекула эндоэдрального фуллерена имеет постоянный дипольный момент, наличие которого сказывается на макроскопических характеристиках соответствующего фуллерита. Потенциал взаимодействия молекул, обла­дающих дипольным моментом, не является сферически симметричным, поэтому составленный из таких молекул кристалл должен обладать сильно выра­женными анизотропными свойствами. Вторая особен­ность связана с зарядовым состоянием инкапсулирован­ного атома и с переходом валентных электронов от этого атома на внешнюю поверхность молекулы фуллерена. Наличие электронов на наружной поверхности фуллереновой оболочки определяет характер межмолекулярного взаимодействия в кристалле, в которое наряду с ван-дер-ваальсовым дает определенный вклад и ковалентный механизм.

Постоянный дипольный момент молекул эндоэдральных металлофуллеренов обусловливает несфериче­ский характер их взаимодействия между собой. Это, в свою очередь, способствует образованию протяженных структур (агрегатов), содержащих некоторое количе­ство подобных молекул. О прямом наблюдении подоб­ных структур сообщалось, в частности, в работе [13], где с помощью сканирующего туннельного микро­скопа, оснащенного полевым ионным микроскопом, изучалось поведение молекул Y@C82 на поверхности Cu(111), имеющей плотность дефектов менее 0,1%. Наблюдения проводились в условиях вакуума глуби­ной 610-11 Торр. Как следует из результатов наблю­дений, выполненных с помощью STM, молекулы на поверхности подложки сохраняют подвижность и имеют тенденцию к адсорбции на краях террасы, образованной на поверхности. Это отличает медную подложку от кремниевой Si(111) и Si(100), на которой положения молекул эндофуллеренов фиксированы. Эндофуллерены Y@C82 на поверхности подложки образуют кла­стеры (Y@C82)n (n=26), в частности димеры, даже на самой начальной стадии напыления, когда поверхност­ная плотность молекул весьма невелика. Показано, что расстояние между молекулами в димере (1,12 нм) меньше, чем соответствующее ван-дер-ваальсово значе­ние (1,18 нм). Это указывает на наличие сильного, не ван-дер-ваальсова взаимодействия между молекулами димера, которое связано с дипольным моментом (~ 2,5 Д). Тем самым эндоэдральные фуллерены про­являют способность к ориентационному выстраиванию, что придает кристаллам на их основе анизотропные свойства, и делает их перспективным материалом с точки зрения приложений.

Как известно [37], фуллеренам присущ фазовый переход ориентационного разупорядочения, который сопровождается размораживанием вращения молекул относительно оси симметрии. Этот фазовый переход связан с некоторым отклонением формы молекул фуллеренов от идеальной сферы и соответствующим отличием потенциала межмолекулярного взаимодействия от сфе­рически симметричного. В случае фуллерита С60 указан­ный переход наблюдается при Т  260 К и характери­зуется теплотой перехода h = 850 К. В случае эндоэдральных металлофуллеренов, которые характеризуются более высокой энергией межмолекулярного взаимодей­ствия и более значительным отклонением потенциала взаимодействия от сферически симметричного, данный переход должен, казалось бы, происходить при более высокой температуре и обладать более высоким тепло­вым эффектом. Этот вывод, однако, противоречит результатам измерений [38], согласно которым в кри­сталле 139Се140Lа@С80 фазовый переход, сопровождае­мый размораживанием вращения молекул, наблюдается при Т=160 К и характеризуется тепловым эффектом 380 К. Возможно, причина указанного расхождения состоит в том, что при вращении молекул в кристалле не нарушается их ориентация вдоль оси расположения инкапсулированных атомов. В таком случае в кристалле рассматриваемого типа при температуре выше или порядка комнатной должен наблюдаться еще один фазовый переход, обусловленный нарушением продоль­ной ориентации молекул. Тем самым вопрос о связи между характером межмолекулярного взаимодействия и динамикой молекул эндометаллофуллеренов в твердофазном состоянии требует дополнитель­ных исследований.

Интересная особенность эндоэдральных соединений связана еще с тем, что атом, заключенный в фуллереновую оболочку, практически теряет свои индивидуальные химические свойства. На это указывают, в частности, результаты одного из первых экспериментов [39] по установлению химических характеристик эндоэдраль­ных фуллеренов. В этой работе сравниваются химиче­ские активности по отношению к реакции с молекулой N02 эндоэдральной молекулы Y@С60 полученной мето­дом лазерного испарения, и экзоэдральной молекулы Y@С60, полученной в масс-спектрометре ионно-циклотронного резонанса с фурьепреобразованием. Как показывают измерения, атом иттрия, входящий в состав экзоэдрального соединения легко окисляется с образованием YO, в то время как эндоэдральный ком­плекс сохраняет стабильность даже при повышении концентрации N02 в 1000 раз. Этот результат, который дополнительно подтверждает эндоэдральную структуру молекулы.

Заключение

Подводя итоги рассмотренной проблемы, относящихся к синтезу, выделению и исследованию свойств эндометаллофуллеренов, следует констатировать, что этот круг проблем за короткий период времени сформировался в новое быстро развивающееся направление химической физики. Интерес к этому направлению со стороны многих исследовательских групп в первую очередь фундаментальный и связан с возможностью искусственного вмешательства в структуру молекул, а также с возможностью изучений последствий такого вмешательства.

Состояние атомных частиц, заключенных в фуллереновую оболочку, уникально и не может быть воспроизведено каким-либо другим способом. Так, атомы металла передают, частично или полностью, свои валентные электроны на внешнюю часть фуллереновой оболочки, практически теряя свою химическую индивидуальность. Это определяет смещенное относительно центра молекулы положение атома внутри углеродного каркаса и придает эндоэдральной молекуле постоянный дипольный момент. Исследование свойств таких частиц существенно расширяет наши представление о поведении квантовых объектов в необычных условиях.

Возможность непосредственного практического применения эндоэдральных структур в технологии и технике физического эксперимента в настоящее время довольно ограничено, что связано в первую очередь с чрезвычайно высокой стоимостью их производства.

Таким образом, эндоэдральные структуры представляют собой новый класс объектов нанометровых размеров, которые обладают уникальными физико-химическими свойствами и чрезвычайно перспективны для практического использования. Несомненно. в ближайшем будущем можно ожидать открытия новых интересных особенностей в поведении этих объектов, а также реализации потенциальных возможностей их практического применения.

Список литературы

  1. Соколов В.И., Станкевич И.В., Успехи химии 62(5) (1993) 455-472.

  2. Kroto H.W., Heath J.R., O`Brien S.C, Curl R.F., Smalley R.E., Nature 318 (1985) 162-163.

  3. Heath J.R., O`Brien S.C., Zhang Q., Lui Y., Curl R.F., Kroto H.W., Smalley R.E., J. Am. Chem. Soc. 107 (1985) 7779-7782.

  4. Bethune D.S., Johnson R.D., Salem J.R., de Veles M.S., Yannoni C.S., Nature 336 (1993) 123-128.

  5. Xiao J.,. Savina M.R., Marin G.B., Francis A.H., Meyerhoff M.E., J. Am. Chem. Soc. 116 (1994) 9341-9342.

  6. Nagase S., Kobayashi K., Acasaka T., Bull. Chem. Soc. Jpn. 69 (1996) 2131-2142.

  7. Tucuta M., Umeda B., Nishibori E., Sucuta M., Saito Y., Ohno M., Shinohara H.,Nature 377 (1995) 46-49.

  8. Sueki K., Kikuchi K., Akiyama K., Sawa T., Katada M., Ambe S., Ambe F., Nakahara H., Chem Phys. Lett. 300 (1999) 140-144.

  9. Xu Z., Nakane T., Shinohara H., J. Am. Chem. Soc.118 (1996) 11309-11310.

  10. Shinohara H., Kagaku 47(4) (1992) 248-252.

  11. Schinazi R.F., Chiang L.Y., Wilson L.J., Cagle D.W., Hill C.L., Fullerenes, edited by Kadish K.M. and Ruoff R.S. (The Electrochemical Society, Pennington, N14, 1997) 357-360.

  12. Елецкий А.В., Успехи физических наук 170(2) (2000) 113-142.

  13. Shinohara H., Rep. Prog. Phys. 63 (2000) 843-292.

  14. Chai Y., Guo T., Jin C., Haufler R.E., Chibante P.F., Fure J., Wang L., Alford J.M., Smalley R.E., J. Phys. Chem. 95 (1991) 7564-7568.

  15. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R., Nature (London) 347 (1990) 354-358.

  16. Lian Y., Shi Z., Zhou X., He X., Gu Z., Carbon 38 (2000) 2117-2121.

  17. Бубнов В.П., Краинский И.С., Лаухина Е.Э., Ягубский Э.Б., Изв. Академии наук. Сер. Хим. 5 (1994) 805-809.

  18. Huang H., Yang S., Chem. Mater. 12 (2000) 2715-2720.

  19. Sun D., Liu Z., Guo X., Xu W., Liu S., J. Phys. Chem. B 101 (1997) 3927-3930.

  20. Saunders M., Science 253 (1991) 330-331.

  21. Pietzak B., Waiblinger M., Murphy T.A, Weidinger A., Dietel E., Carbon 36 (1998) 613-615.

  22. Murphy T.A., Pawlik Th., Weidinger A., Alcala R., Spaeth J.M., Phys. Rev. Lett. 77 (1996) 1075-1078.

  23. Ohtsuki T, Masumoto K., Phys. Rev. Lett. 77 (1996) 3522-3524.

  24. Бубнов В.П., Кольтовер В.К., Лаухина Е.Э., Эстрин Я.И., Ягубский Э.Б., Известия Академии наук. Серия химическая 2 (1997) 254-258.

  25. Ding J., Yang S., Chem. Mater. 8 (1996) 2824-2827.

  26. Kubozono Y., Maeda H., Takabayashi Y., Hiraoka K., Nakai T., Kashino S., Emura S., Ukita S., Sogabe T., J. Am. Chem. Soc. 118 (1996) 6998-6999.

  27. Cagle D.W., Alford J.M., Tien J., Wilson L.J., Fullerenes, edited by Kadish K.M. and Ruoff R.S. (The Electrochemical Society, Pennington, N14, 1997) 361-368.

  28. Thrash T.P., Cagle D.W., Alford J.M., Ehrhardt G.J., Lattimer J.C., Wilson L.J., Fullerenes, edited by Kadish K.M. and Ruoff R.S. (The Electrochemical Society, Pennington, N14, 1997) 349-356.

  29. Kikuchi K. Nakao Y., Suzuki S., Achiba Y., Chem. Phys. Lett. 216 (1993) 67-71.

  30. Fowler P.W., Manolopoulos D.E. “An Atlas of Fullerenes” Oxford: Clarendon Press, 1995.

  31. Yamamoto E., Tansho M., Tomiyama T., Shinohara H., Kawahara H., Kobayashi Y., J. Am. Chem. Soc. 118 (1996) 2293-2294.

  32. Shinohara H., Yamaguchi H., Hayashi N., Sato H., Ohkohchi M., Ando Y. And Saito Y 1993 J. Phys. Chem. 97 4259.

  33. Liu S., Sun S., Journal of Organometallic Chemistry 599 (2000) 74-86.

  34. Lebedkin S., Renker B., Heid R., Schober H., Rietschel H., Appl. Phys. A 66 (1998) 273-280.

  35. Lin N., Huang H., Yang S., Cue N., J. Phys. Chem. A 102 (1998) 4411-4413.

  36. Nagase S., Kobayashi K., Akasaka T., Bull. Chem. Soc. Jpn. 69 (1996) 2131-2142.

  37. Heiney P.A., Fisher J.E., McGhie A.R., Phys. Rev. Lett. 66(22) (1991) 2911-2914.

  38. Sato W., Sueki K., Kikuchi K., Suzuki S., Achiba Y, Nakahara H., Phys. Rev. B 58 (1998) 10850-10856.

  39. McElvany S.W., J. Phys. Chem. 96(12) (1992) 4935-4937.

26


Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее