149941 (Пространство и время в физике), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Пространство и время в физике", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "149941"

Текст 3 страницы из документа "149941"

общая теория относительности дополняется космологическим

постулатом однородности и изотропности Вселенной.

Строгое выполнение принципа изотропности Вселенной ведёт к

признанию её однородности. На основе этого постулата в

релятивистскую космологию вводится понятие мирового

пространства и времени. Но это не абсолютные пространство и

время Ньютона, которые хотя тоже были однородными и

изотропными, но в силу евклидовости пространства имели нулевую

кривизну. В применении к неевклидову пространству условия

однородности и изотропности влекут постоянство кривизны, и

здесь возможны три модификации такого пространства: с нулевой,

отрицательной и положительной кривизной.

Возможность для пространства и времени иметь различные

значения постоянной кривизны подняли в космологии вопрос

конечна Вселенная или бесконечна. В классической космологии

 

13

подобного вопроса не возникало, т.к. евклидовость пространства

и времени однозначно обуславливала её бесконечность. Однако в

релятивистской космологии возможен и вариант конечной Вселенной

- это соответствует пространству положительной кривизны.

Вселенная Эйнштейна представляет собой трёхмерную сферу -

замкнутое в себе неевклидово трёхмерное пространство. Оно

является конечным, хотя и безграничным. Вселенная Эйнштейна

конечна в пространстве, но бесконечна во времени. Однако

стационарность вступала в противоречие с общей теорией

относительности, Вселенная оказалась неустойчивой и стремилась

либо расшириться, либо сжаться. Чтобы устранить это

противоречие Эйнштейн ввёл в уравнения теории новый член

с помощью которого во Вселенную вводились новые силы,

пропорциональные расстоянию, их можно представить как силы

притяжения и отталкивания.

Дальнейшее развитие космологии оказалось связанным не со

статической моделью Вселенной. Впервые нестационарная модель

была развита А. А. Фридманом. Метрические свойства пространства

оказались изменяющимися во времени. Выяснилось, что Вселенная

расширяется. Подтверждение этого было обнаружено в 1929 году Э.

Хабблом, который наблюдал красное смещение спектра. Оказалось,

что скорость разбегания галактик возрастает с расстоянием и

подчиняется закону Хаббла V = H*L, где Н - постоянная Хаббла, L

- расстояние. Этот процесс продолжается и в настоящее время.

Всвязи с этим встают две важные проблемы: проблема

расширения пространства и проблема начала времени. Существует

гипотеза, что так называние "разбегание галактик" - наглядное

обозначение раскрытой космологией нестационарности

пространственной метрики. Таким образом, не галактики

разлетаются в неизменном пространстве, а расширяется само

пространство.

Вторая проблема связана с представлением о начале времени.

Истоки истории Вселенной относятся к моменту времени t=0, когда

произошёл так называемый Большой взрыв. В.Л. Гинзбург считает,

что "...Вселенная в прошлом находилась в особом состоянии,

которое отвечает началу времени, понятие времени до этого

начала лишено физического, да и любого другого смысла".

В релятивистской космологии была показана относительность

конечности и бесконечности времени в различных системах

отсчёта. Это положение особо чётко отразилось в представлениях

о "чёрных дырах". Речь идет об одном из наиболее интересных

явлений современной космологии - гравитационном коллапсе.

 

14

С.Хокинс и Дж. Эллис отмечают: "Расширение Вселенной во многих

отношениях подобно коллапсу звезды, если не считать того, что

направление времени при расширении обратное".

Как "начало" Вселенной, так и процессы в "чёрных дырах"

связаны со сверхплотным состоянием материи. Таким свойством

обладают космические тела после пересечения сферы Шварцшильда

(условная сфера с радиусом r = 2GM/cэ, где G - гравитационная

постоянная, М - масса). Независимо от того, в каком состоянии

космический объект пересёк соответствующую сферу Шварцшильда,

далее он стремительно переходит в сверхплотное состояние в

процессе гравитационного коллапса. После этого от звезды

невозможно получить никакой информации, т.к. ничто не может

вырваться из этой сферы в окружающее пространство - время:

звезда потухает для удалённого наблюдателя, и в пространстве

образуется "чёрная дыра".

Между коллапсирующей звездой и наблюдателем в обычном мире

пролегает бесконечность, т. к. такая звезда находится

за бесконечностью во времени. Таким образом, оказалось, что

пространство - время в общей теории относительности содержит

сингулярности, наличие которых заставляет пересмотреть

концепцию пространственно - временного континуума как некоего

дифференцируемого "гладкого" многообразия.

Возникает проблема, связанная с представлением о конечной

стадии гравитационного коллапса, когда вся масса звезды

спрессовывается в точку ( r -> 0 ), когда бесконечна плотность

материи, бесконечна кривизна пространства и т.д. Это вызывает

обоснованное сомнение. Дж. Уитлер считает, что в заключительной

стадии гравитацинного коллапса вообще не существует

пространства - времени. С. Хокинг пишет: "Сингулярность - это

место, где разрушается классическая концепция пространства и

времени так же, как и все известные законы физики, поскольку

все они формулируются на основе классического пространства -

времени. Этих представлений придерживаются большинство

современных космологов.

На заключительных стадиях гравитационного коллапса вблизи

сингулярности необходимо учитывать квантовые эффекты. Они

должны играть на этом уровне доминирующую роль и могут вообще

не допускать сингулярности. Предполагается, что в этой области

происходят субмикроскопические флуктуации материи, которые и

составляют основу глубокого микромира.

Всё это свидетельствует о том, что понять мегамир

невозможно без понимания микромира.

 

15

3. ПРОСТРАНСТВО И ВРЕМЯ В ФИЗИКЕ МИКРОМИРА.

3.1. Пространственно-временные представления

квантовой механики.

 

Создание Эйнштейном специальной теории относительности не

исчерпывает возможноси взаимодействия механики и

электродинамики. В связи с объяснением теплового излучения было

выявлено противоречие как в истолковании экспериментальных

данных, так и в теоретической согласованности этих выводов. Это

повлекло за собой рождение квантовой механики. Она положила

начало неклассической физике, открыла дорогу к познанию

микрокосмоса, к овладению внутриатомной энергией, к пониманию

процессов в недрах звёзд и "начале" Вселенной.

В конце XIX века физики начали исследовать, как

распределяется излучение по всему спектру частот. В тот период

физики задались также целью выяснить природу взаимосвязи

энергии излучения и температуры тела. М. Планк пытался решить

эту проблему с помощью методов классической электродинамики, но

это не привело к успеху. Попытка решить проблему с позиции

термодинамики столкнулась с рассогласованностью теории и

эксперимента. Планк получил формулу плотности излучения с

помощью интерполяции:

8 h

ДДДДДДv

c

р = ДДДДДДДДДДДДД , где

hv

exp(ДД) - 1

kT

 

v - частота излучения, Т - температура, k - постоянная

Больцмана.

Полученная Планком формула была очень содержательной,

кроме того, она включала ранее неизвестную постоянную h,

которую Планк назвал элементарным квантом действия.

Справедливость формулы Планка достигалась очень странным

для классической физики предположением: процесс излучения и

поглощения энергии является дискретным.

C работами Эйнштейна о фотонах в физику вошло

представление о карпускулярно - волновом дуализме. Реальная

природа света может быть представлена как диалектическое

единство волны и частиц.

 

16

Однако возник вопрос о сущности и структуре атома. Было

предложено множеств о противоречащих друг другу моделей. Выход

был найден Н. Бором путём синтеза планетарной модели атома

Резерфорда и квантовой гипотезы. Он предположил, что атом может

иметь ряд стационарных состояний при переходе в которые

поглащается или излучается квант энергии. В самом же

стационарном состоянии атом не излучает. Однако теория Бора не

объясняла интенсивности и поляризации излучения. Частично с

этим удалось справиться с помощь принципа соответствия Бора.

Этот принцип сводится к тому, что при описании любой

микроскопической теории необходимо пользоваться терминологией,

применяемой в макромире.

Принцип соответствия сыграл важную роль в исследованиях де

Бройля. Он выяснил, что не только световые волны обладают

дискретной структурой, но и элементарным частоцам материи

присущ волновой характер. На повестку дня встала проблема

создания волновой механики квантовых объектов, которая в 1929

году была решена Э. Шредингером, который вывел волновое

уравнение, носящее его имя.

Н. Бор вскрыл истинный смысл волнового уравнения

Шредингера. Он показал, что это уравнение описывает амплитуду

вероятности нахождения частицы в данной области пространства.

Чуть раньше (1925г.) Гейзенбергом была разработана

квантовая механика. Формальные правила этой теории основаны на

соотношении неопределённостей Гейзенберга: чем больше

неопределённость пространственной координаты, тем меньше

неопределённость значения импульса частицы. Аналогичное

соотношение имеет место для времени и энергии частицы.

Таким образом, в квантовой механике была найдена

принципиальная граница применимости классических физических

представлений к атомным явлениям и процессам.

В квантовой физике была поставлена важная проблема о

необходимости пересмотра пространственных представлений

лапласовского детерминизма классической физики. Они оказались

лишь приближёнными понятиями и основывались на слишком сильных

идеализациях. Квантовая физика потребовала более адекватных

форм упорядоченности событий, в которых учитывалось бы

существование принципиальной неопределённости в состоянии

объекта, наличие черт целостности и индивидуальности в

микромире, что и выражалось в понятии универсального кванта

действия h.

Квантовая механика была положена в основу бурно

 

17

развивающейся физики элементарных частиц, количество которых

достигает нескольких сотен, но до настоящего времени ещё не

создана корректная обобщающая теория. В физике элементарных

частиц представления о пространстве и времени столкнулись с ещё

большими трудностями. Оказалось, что микромир является

многоуровневой системой, на каждом уровне которой господствуют

специфические виды взаимодействий и специфические свойства

пространственно - временных отношений. Область доступных в

эксперименте микроскопических интервалов условно делится на

четыре уровня: 1) уровень молекулярно - атомных явлений, 2)

уровень релятивистских квантовоэлектродинамических процессов,

3) уровень элементарных частиц, 4) уровень ультрамалых

масштабов, где пространственно - временные отношения

оказываюстя несколько иными, чем в классической физике

макромира. В этой области по-иному следует понимать природу

пустоты - вакуум.

В квантовой электродинамике вакуум является сложной

системой виртуально рождающихся и поглащающихся фотонов,

электронно - позитронных пар и других частиц. На этом уровне

вакуум рассматривают как особый вид материи - как поле в

состоянии с минимально возможной энергией. Квантовая

электродинамика впервые наглядно показала, что пространство и

время нельзя оторвать от материи, что так называемая "пустота"

- это одно из состояний материи.

Квантовая механика была применена к вакууму, и оказалось,

что минимальное состояние энергии не характеризуется нулевой её

плотностью. Минимум её оказался равным уровню осциллятора hv/2.

"Допустив скромные 0.5hv для каждой отдельной волны, - пишет Я.

Зельдович, - мы немедленно с ужасом обнаруживаем, что все волны

вместе дают бесконечную плотность энергии". Эта бесконечная

энергия пустого пространства таит в себе огромные возможности,

которые ещё предстоит освоить физике.

Продвигаясь вглубь материи, учёные перешагнули рубеж 10

см. и начали исследовать физические процессы в области

субатомных пространственно - временных отношений. На этом

уровне структурной организации материи определяющую роль играют

сильные взаимодействия элементарных частиц. Здесь иные

пространственно - временные понятия. Так, специфике микромира

не соответствуют обыденные представления о соотношении части и

целого. Ещё более радикальных изменений пространственно -

временных представлений требует переход к исследованию

процессов, характерных для слабых взаимодействий. Поэтому на

 

18

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5192
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее