EnTrope (Энтропия. Теория информации), страница 5

2016-08-01СтудИзба

Описание файла

Документ из архива "Энтропия. Теория информации", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "EnTrope"

Текст 5 страницы из документа "EnTrope"

H = Н(А) + Н(В) - Н(А,В) (3.2)

Согласно негэнтропийному принципу информации (3.4) получаем :

IS =Н(А) +Н(В) - Н(А,В) (3.3)

Распространяя рассмотренные Шенноном взаимодействия абстрактных математических множеств на случаи взаимодействий реальных физических систем, можно сделать следующие выводы :

1. Соотношения ( 3.1 ), (3.2) и (3.3 ) можно распространить на случаи взаимодействий упорядоченных физических систем, в частности на взаимодействия физических сред с различными видами полей.

При этом необходимо осуществлять переход от информационной энтропии Н к термодинамическай энтропии S , используя соотношение (1.4) Приложений 1.

2. Знак равенства в соотношении (3.1) соответствует случаю отсутствия взаимодействия между рассматриваемыми физически­ми системами (например, случай воздействия магнитного поля на не обладающую магнитными свойствами среду).

3. Во всех остальных случаях в соответствии с соотношением (3.3) происходит накопление структурной информации  IS, характеризующей увеличение упорядоченности структуры вновь образующейся системы (формирование и ориентация магнитных доменов под воздействием магнитного поля, структуализация под воздействием электрического поля поляризуемых сред и т.п.).

С помощью вероятностной функции энтропии можно описать формальным математическим языком процесс адапации системы к внешним воздействиям, понимая процесс адаптации как обучение оптимальному поведению в заданных условиях внешней среды.

Рассмотрим систему, обладающую возможностью выбора одного из N возможных ответов (реакций) на внешние воздействия. До прохождения обучения система способна отвечать на любые воздействия лишь выбранной наугад реакцией i, причем i может принимать любые значения от i = 1 до i = N, т.е.:

i=1,2,3,.. . N , (3.4)

При этом условии вероятности всех ответов равны друг другу, т.е.:

Р1= Р2 = … =PН=1/N (3.5)

Как было показано ранее, при этом условии реальная энтропия Нr равна максимальной энтропии Hmax, т.е.:

Hr = -

i = N

pi log pi = log N = Hmax

(3.6)

i = 1

В результате обучения возникают различия вероятностей разных реакций.



В соответствии с рассмотренными ранее свойствами функции

pi log pi

i


реальная энтропия Hr уменьша­ется на величину

IS = Hmax – Hr

(3.7)

С точки зрения теории вероятностей начальный алфавит с заданным числом букв представляет собой полную группу событий.

Для полной группы событий при любом распределении вероятностей сумма их всегда равна 1 , согласно известному из теории вероятности условию нормировки:

i = N

pi = 1

(3.6)

i = 1

Смысл условия нормировки заключается в том, что сумма вероятностей выпадения всех 6-ти граней игральной кости равна вероятности выпадения любой грани, т.е. :

Р1 + Р2 + … Р6 = 1/6 + 1/6 + … + 1/6 = 1

6 раз

В рассматриваемом нами процессе обучения, приводящем к дифференцировке значений вероятностей реакций Pi , состав­ляющих полную группу N, условие (3.8) свидетельствует о том, что увеличение вероятностей каких -то реакций может происходить только за счет уменьшения всех остальных вероятностей (чтобы сумма была по-прежнему равна 1, см. рис. 1, случай б).

В предельном случае одна из N вероятностей может возрасти до 1, тогда все остальные вероятности станут равны 0 (рис. 1).

В случае текста предельному случаю дифференцировки соот­ветствует вероятность одной буквы (например, «е»), равная 1. Вероятности всех остальных букв при этом равна нулю. Это значит, что текст вырождается в повторение одной буквы

е е е е е ...

Этот случай соответствует жесткой детерминации (незатухающий строго периодический процесс).

Соответствующее жесткой детерминации распределение вероятностей, при котором некая вероятность Рк равна 1, а все остальные - равны 0, в общем виде запишется как

Рк=1 (3.9)

Р1 = Р2 = . . .= Рк-1 = Рк+1=. . .= 0 (3.10)

а)


Р1 Р2


Pn


б)


в)


Равномерное распределение вероятностей

Нr = Hmax

Дифференцировка вероятностей при соблюдении условия

i=N

pi = 1

i=1

Hmax > Hr > 0

Предельный случай дифференцировки вероятностей

Нr = 0


Рис. 1



При подстановке этих значений в функцию энтропии :

Hr =

i = N

pi log pi

(3.11)

i = 1

получаем :

Hr=0 (3.12)

Подставляя (3.9) в (3.4), получаем :

IS = Hmax (3.13)

В

Hr = Hmax

IS = 0


Hr = 0

IS = Hmax

се стадии перехода от состояния максимальной энтропии, описываемого условиями (3.4), (3.5), (3.6), к состоянию жесткой детерминации, которому соответствуют условия ( 3.9 ) + (3.13) можно представить в виде дуги, соединяющей исходное состояние Н с конечным состоянием К (рис. 2).

Рис. 2


На рис.3 изображена расширяющаяяся иерархическая спи­раль, которая может служить моделью формирования иерархических упорядоченных структур.

Пусть нижний уровень этой спирали (п = 0) соответствует на­чальному алфавиту, состоящему из N0 различных элементов (букв, атомов, нуклеотидов и др.).

n = 0

n = 1

n = 2

n = 3

рис. 3

Тогда на уровне N = 1 из этого алфавита можно составить N1 «слов». Если каждое слово состоит из K1 букв, то из N0 букв можно составить число слов, равное:

N1 = N0K1 (3.14)

Соответственно, на уровне п = 2 из N1 «слов» можно соста­вить количество «фраз», равное:

N2=N1K2=N0K1K2 (3.15)

где Кг - число входящих в каждую «фразу» «слов»

Для упрощения математических выражений мы уже приняли одно допущение, сказав, что все слова содержат одинаковое ко­личество букв (К1), а все фразы содержат одинаковое количество слов (К2). Очевидно, что в реальных системах (например, в письменных текстах ) эти условия не соблюдаются. Однако для выполнения общих свойств нашей информационно -энтропийной модели подобные упрощения вполне допустимы, поэтому мы введем еще одно допущение:

K1 = К2 = К (3.16)

Подставив (3.16) в (3.15), мы получим :

N2=N0K2 (3.17)

Проводя аналогичные операции для любой (п-ой) ступени при условии:

K1 = K2 = … = Кп = К,

получим:

Nn = N0K2 (3.18)

Рассмотрим пример, иллюстрирующий увеличение разнообразия (числа различимых элементов) с переходом на более высокие уровни изображенной на рис . 3.3 спирали в соответствии с форму­лами (3.14) + (3.18).

Если алфавит (уровень п = 0) содержит 30 букв (N0 = 30), а каждое «слово» искусственного текста состоит из 6 букв = 6), то общее число таких «слов» составит:

N1 = N0K1 = 306 = 729 ·106

Среди указанного количества «слов» большинство составят бессмысленные или даже непроизносимые «слова» (из 6-ти глас­ных, 6-ти согласных и т.п.).

Но если хотя бы 0,01% от общего числа буквенных комбинаций составят осмысленные слова, общий лексикон составит 72 900 слов.

Еще более прогрессивно возрастает число комбинаций с переходами на более высокие уровни n = 2, п = 3 и т.д.

Для определения возрастания информационной емкости по мере перехода на более высокие уровни изображенной на информаци­онно-энтропийной спирали напомним , что максимальное количес­тво структурной информации A/s' накапливается при переходе от Нr = Нmax к Нr′′ = 0, т.е. равно:

IS = Нr′ – Нr′′ = Hmax

Величина максимальной энтропии для п - ой ступени определя­ется как:

Нпmax = log Nn = Кn log N0 (3.19)

Сопоставляя величину Нпгнх с величиной энтропии ступени n = О

H0max = log N0 (3.20)

убеждаемся, что в результате перехода с уровня n = 0 на уро­вень n , максимальная энтропия возросла в Кn раз :

Нпmaxn Н0max (3.21)

При переходе от исходного состояния Н в конечное состояние К энтропия уменьшается от Нr = Нmax до Нr = 0, а величина на­капливаемой системой информации соответственно возрастает от I=0 до IS = Нmax (см. рис 1).

При переходе с уровня n = О на уровень n в соответствии с увеличением энтропии в Кn раз увеличивается значение ISmax то есть возрастает потенциальная емкость:

( ISmax)0 = Kn( ISmax)0 (3.22)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее