Fullerens (Фуллерены), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Фуллерены", который расположен в категории "". Всё это находится в предмете "физика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "физика" в общих файлах.

Онлайн просмотр документа "Fullerens"

Текст 2 страницы из документа "Fullerens"

неупругому нейтронному рассеянию. Для зазора HOMO—LUMO изолированной молекулы С60 рассчитано значение 1.9 эВ. В конденсированном состоянии этот зазор уменьшается из-за перекрытия волновых функций, связанного с соседними молекулами. Рассчитанная зонная структура С60 в твердотельном состоянии (ГЦК-решетка) показана на рисунке 3 справа. Наблюдается дисперсия в энергии пяти hu-вычисленных валентных зон и трех t1u - вычисленных зон проводимости. Вычисления показывают, что твердотельный С60 в ГЦК-решетке представляет собой прямозонный полупроводник с шириной запрещенной зоны 1.5 эВ. Оптические переходы между потолком валентной зоны и дном зоны проводимости являются запрещенными по соображениям симметрии, так как волновые функции начального и конечного состояний имеют одинаковую четность.

Несмотря на многочисленные исследования электронной структуры С60, сведения об области энергий вокруг уровня Ферми остаются противоречивыми. Зонная структура С60 в ГЦК-решетке сходна со строением энергетических уровней изолированного кластера С60. Для зазора HOMO—LUMO изолированной молекулы С60 рассчитано значение 1.9 эВ. В конденсированном состоянии этот зазор уменьшается из-за перекрытия волновых функций, связанного с соседними молекулами. Наблюдается дисперсия в энергии пяти вычисленныхвалентных зон hu и трех вычисленных зон проводимости

t1u. Вычисления показывают, что фуллерит С60 в ГЦК-решетке представляет собой прямозонный полупроводник с минимумом энергетической щели в точке X зоны Бриллюэна. Расчеты в приближении квазичастиц предсказывают величину щели 2.15 эВ, метод локальной плотности дает явно заниженное значение 1.5 эВ. Наиболее надежным значением для энергетического расстояния между серединами зон HOMO и LUMO можно считать 3.36 эВ при теоретическом значении 3 эВ. Ионизационный потециал равен 7.62 эВ, сродство к электрону 2.65, энергия низшего триплетного состояния 1.7 эВ. Работа выхода для аморфных пленок С60 определена как 4.53 эВ. Кулоновское взаимодействие между молекулами составляет

U=1.6 эВ. Такое значение U должно приводить к возникновению экситонов Френкеля в районе 1.5-2 эВ. Возникновение экситонов Френкеля и экситонов с переносом заряда, характеризующихся тем ,что возбужденный электрон находится на одной молекуле, а дырка на другой.

4. Кристаллические модификации фуллеритов

4.1. Ориентационные структуры

Равновесная твердая фаза С60 при комнатной температуре представляет собой кристаллы с гранецентрированной кубической решеткой (ГЦК), с постоянной а = 1.417 нм, в которой отдельные молекулы удерживаются силами Ван-дер-Ваальса. Элементарная ячейка содержит 8 тетраэдрических пустот и 4 октаэдрические пустоты, каждая из которых окружена соответственно 4 и 6 молекулами С60. Расстояние между ближайшими соседними молекулами равно 1.002 нм.

Координационное число молекул фуллерена в ГЦК-фазе равно 12.

Можно выделить как минимум 4 различных ориентационных состояния фуллерита С60: стекольная фаза, простая кубическая решетка, фаза свободного вращения (чаще всего гранецентрирован-ная кубическая, однако встречались сообщения о гексагональной плотной упаковке) и полимеризованная фаза.

Считается, что при температурах выше 249 — 260 К молекулы быстро вращаются, имеют квазисферическую форму и образуют ГЦК-решетку. По данным ЯМР, частота вращения при комнатной температуре составляет 10^12 с^-1. Но даже в этой фазе вращение не полностью свободно, поскольку существует сильная интермолекулярная ориентационная корреляция. Локализация осуществляется за счет более богатой электронами связи С=С, которая примыкает к центру пентагона соседней молекулы, имеющей более низкую электронную плоскость. Вблизи температуры ориентационного перехода размер коррелированных кластеров достигает 4 нм. При охлаждении фуллерита в области температур 250 — 260 К сходит фазовый переход первого рода: кристалл переходит в простую примитивную кубическую решетку (ПК) с 4 молекулами

в элементарной ячейке. Переход не связан с перемещением молекул, а вызван лишь взаимным упорядочением. Вращательное движение сменяется скачкообразным и либрационным движением около равновесной ориентации. При температуре 90 К скачки замерзают и происходит переход типа стеклования. Ориентация молекул влияет на такие черты электронной структуры, как вырождение, дисперсия, ширина зон, положение экстремумов валентной зоны и зоны проводимости.

Упорядочение в простой кубической фазе не является полным, поскольку возможны две ориентации молекул, в которых молекулы повернуты на 38 или 98° относительно оси [111]. Насыщенные электронами межпентагонные связи могут быть направлены на бедные электронами грани пентагонов (Р-ориентация) или гексагонов (H-ориентация). Эти две ориентации почти одинаковы энергетически. Однако они имеют различную постоянную решетки. Этим объясняется маленький коэффициент термического расширения фуллерита: расширение сопровождается реориентацией. Все перечисленные фазы претерпевают огромные изменения при приложении давления. Давление меняет расстояние и, следовательно, интермолекулярные взаимодействия. Изучение влияния давления на ориентационное поведение С60 выявило три основных момента:

1) возрастание внешнего давления замедляет вращение молекул и увеличивает вращательную анизотропию, следовательно, давление индуцирует переход в ПК-фазу; температура фазового перехода

ПК—ГЦК увеличивается линейно с наклоном линии смены фаз dT/dP = 162 К/ГПа.

2) давление существенно уменьшает ориентационные флуктуации в упорядоченной низкотемпературной ПК-фазе;

3) предполагается существование двух (а не одного) ориентационных переходов в области 247 К.

В промежутке между двумя фазовыми переходами сосуществуют две фазы: Н и Р. При нормальных условиях предпочтительна пентагонная ориентация, но гексагенная ориентация требует меньшего объема и становится предпочтительнее при приложении внешнего давления. Соотношение между Р- и Н-ориентациями описывается уравнением:

f(T)= 1/[1 +ехр(Д/kT)].

Р-ориентация имеет энергию на 40 мэВ меньше, чем H, барьер между двумя минимумами составляет 130 мэВ на молекулу.

Рисунок 4. Полная энергия на молекулу как функция угла поворота в структуре Pm3m для двух различных постоянных решетки: a=1.404 нм соответствует атмосферному давлению, а=1.36 – внешнему давлению 1.5Гпа.

На рисунке 4 показаны расчетные зависимости полной энергии фуллерита от ориентации молекул. Более глубокий минимум соответствует Р-ориентации. Те же расчеты, выполненные для постоянной решетки а = 1.36 нм, что соответствует давлению 1.5 ГПа, демонстрируют, что обе ориентации равновероятны. При 260 К пентагонная ориентация составляет 60 %, а около 90 К 84 %. Прикладывая давление, можно создать полностью ориентированную фазу С60, несмотря на то что экспоненциальный характер распределения в принципе запрещает существование какой-либо полностью ориентированной фазы и тем более какой-либо линии на фазовой диаграмме. Тем не менее в эксперименте у функции P/H=f(T) после значения 80/20 происходит скачок к распределению 98/2. Причина скачкообразного изменения фазы может быть следующая. Потенциал молекулярной реориентации должен учитывать не только вращение одной молекулы, но и когерентное коллективное движение всех молекул. В первом случае отенциал будет иметь один минимум: полностью ориентированное состояние. Разумно предположить, что кристалл состоит из большого числа Р- или Н- ориентированных микродоменов, а не из смеси беспорядочно ориентированных молекул. Далее, логично ожидать, что переключение в полностью ориентированную фазу произойдет, когда ориентированы 11 молекул из 12. Кроме того, можно предполагать, что однажды сформированная Н-фаза будет сохранять стабильность до фазового перехода.

Ниже 90 К все молекулярные реориентации замерзают, но, по видимому, некоторый ориентационный беспорядок остается, что приводит к наблюдаемому переходу типа стеклования вблизи 90 К.

4.2. Понятие об интеркаляции в фуллеритах

При внедрении атомов примеси в фуллеритовую матрицу могут происходить два процесса. В первом случае атомы примеси распределяются в кристалле в виде отдельных кластеров. Для фуллеренов характерно другое явление, а именно интерполяция атомов примеси в решетку фуллерита. Интеркаляционные соединения представляют собой материал, в котором атомы или молекулы примеси захвачены между слоями кристаллической решетки. Формально химическая связь между интеркалянтом и матрицей отсутствует. Процессы интеркаляции широко изучаются, например, в графите, где атомы примеси внедряются в пространство между плоскостями решетки графита, не деформируя саму структуру кристалла. Интеркаляция атомов примеси в решетку фуллерена происходит несколько иначе. Фуллерены представляют собой трехмерный тип интеркаляционных соединений. Диаметр молекулы С60 велик по сравнению с размерами большинства элементов периодической таблицы. Следствием является очень большая для кристаллов, состоящих из атомов одного сорта, постоянная решетки (а = 1.42 нм; для сравнения в кремнии а = 0.54 нм, в германии а = 0.57 нм); для высших фуллеренов а еще больше. Из-за этого в межмолекулярные пустоты кристалла С60 могут внедряться, не деформируя решетку атомы примеси. Тем не менее не все элементы могут формировать объемные интеркаляционные соединения. В основном это щелочные, щелочноземельные и редкоземельные металлы. Решающим фактором при этом является сумма работ выхода металла Еf и энергии когезии Еkog. Если эта сумма меньше уровня низшей незаполненной молекулярной орбитали Elumo, то энергия интеркаляции Еинт = Elumo - Еkor - Ef положительна и создание трехмерных интеркаляционных соединений возможно. При интеркаляции примеси в фуллереновую матрицу могут создаваться структуры, представленные на рисунке 5. Интеркаляция может существенно влиять на физические и электронные свойства материала. Процесс интеркаляции характеризуется большим переносом заряда от атома примеси к молекуле С60 (в случае легирования фуллеренов щелочными металлами происходит полный перенос заряда к С60 — следствие низкого потенциала ионизации атомов щелочных металлов). При этом велик интеграл перекрытия волновых функций атома примеси и С60. При интеркаляции будет повышаться проводимость за счет атомов, поставляющих свои пи-электроны, причем проводимость будет резко зависеть от того, какие позиции заняты этими атомами. В случае щелочных металлов этот эффект проявляется очень сильно. Электрические свойства таких композитных соединений зависят от количества атомов щелочных металлов, приходящихся на элементарную ячейку С60. На каждую молекулу имеется 1 окта-эдрическая и 2 тетраэдрические пустоты. С60 имеет большое сродство к электрону, щелочные металлы легко отдают электроны.

Экспментальные данные следующие:

1) рамановская и фотоэлектронная спектроскопия показывает, что заряд переносится от щелочных металлов к фулерену;

2) химический анализ показывает, что для достижения наивысшей проводимости стехиометрия A3C60;

3) ритвальдский анализ данных рентгеновской дифракции показывает, что решетка имеет структуру ГЦК.

Рисунок 5. Строение элементарной ячейки интеркалированного фуллерена при различных заполнениях пустот решетки.

Иными словами, при x = 3 все пустоты ГЦК-решетки заполнены и каждая молекула С60 приняла 3 электрона в зону проводимости t1u. Создалась наполовину заполненная зона. При увеличении количества металла структура перейдет в объемно-центрированную тетрагональную (ОЦТ) фазу и далее в кубическую (ОЦК). В последнем случае зона будет заполнена полностью, что соответствует диэлектрику. Так же как в случае графита, работает модель жестких зон. Атомы металла играют роль доноров, а валентная зона и зона проводимости сохраняют свой характер. Экспериментально показано, что в соединении АxС60 при малых x наблюдается падение удельного сопротивления; при увеличении x до 3 свойства материала становятся все более близкими к металлическим. Некоторые соединения А3С60 проявляют сверхпроводящие свойства. Далее при росте x удельное сопротивление опять увеличивается, и А6С60 фактически становится диэлектриком.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее