148402 (Микропроцессорные системы управления АМТС), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Микропроцессорные системы управления АМТС", который расположен в категории "". Всё это находится в предмете "транспорт" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "транспорт" в общих файлах.

Онлайн просмотр документа "148402"

Текст 2 страницы из документа "148402"

При поступлении запроса от контроллера на прерывание ЦПУ сначала заканчивает выполнение текущей команды, а затем выдает на управляющую шину сигнал разрешения прерывания, т. е. готовность перехода от основной программы к подпрограмме. После этого контроллер информирует ЦПУ, на какую из подпрограмм ему следует перейти. По окончании выполнения этой подпрограммы ЦПУ либо по сигналу контроллера прерывания переходит на новую подпрограмму, запрос на которую поступил к контроллеру от следующего по старшинству приоритета внешнего устройства, либо при отсутствии таких запросов возвращается к выполнению основной программы.

Выполнение ЦПУ подпрограмм в порядке, определяемом старшинством приоритета внешних устройств, обеспечивает первоочередную реализацию в системе управления переключением передач таких управляющих воздействий, которые являются наиболее важными для автомобиля. В частности, старшим приоритетом, как правило, обладают внешние устройства, сигнализирующие о неполадках в системе управления, могущих создать для автомобиля аварийную ситуацию.

Микросхема контроллера прерываний КР580ВН59 имеет восемь входов для подключения к внешним устройствам. К одному или нескольким из этих входов могут быть подключены выходы таймера. Если при этом к входам таймера подвести сигналы от датчиков скорости и частоты вращения, то такое схемное решение позволит исключить из состава системы управления частотно-аналоговые и аналого-цифровые преобразователи, поскольку выполняемые ими задачи могут быть решены совместным действием таймера и ЦПУ.

Таймер может быть также использован для создания программ микропроцессорных систем управления, устойчивых к сбоям под воздействием внешних помех. В этом случае таймер используется для периодического контроля состояния элементов микропроцессорных систем управления, которое зависит от того, правильно ли функционирует система или в ней имеют место сбои.

После того, как ЦПУ заканчивает обработку соответствующего объема информации, он выдает управляющую команду, которая далее через канал вывода интерфейса поступает к блоку усилителей питания электромагнитов исполнительных устройств, а также к блоку индикации режимов. В результате обеспечивается требуемый порядок срабатывания исполнительных устройств и получение индикации режимов их работы.

Если для управления переключением передач применить однокристальную ЭВМ, то по своим функциональным возможностям она будет эквивалентна микросхеме, очерченной на рисунке 1 штрих-пунктирной линией. В этом случае микропроцессорная система существенно упрощается. По техническим возможностям она практически не уступает системам, создаваемым с использованием нескольких микросхем, входящих в микропроцессорный комплект. В частности, если объем памяти однокристальной ЭВМ окажется недостаточным, то его можно увеличить, подключив ЭВМ к внешним устройствам.

Однокристальная ЭВМ содержит сотни тысяч элементов, и технология ее изготовления значительно сложнее по сравнению с изготовлением микросхем, входящих в микропроцессорный комплект. Вследствие этого стоимость однокристальной ЭВМ достаточно высока. Поэтому вопрос о целесообразности создания микропроцессорных систем управления на базе однокристальной ЭВМ следует решать с учетом конкретных областей применения той или иной системы управления.

По сравнению с электронными системами управления микропроцессорные системы имеют следующие преимущества:

с их помощью возможна реализация алгоритма управления любой сложности. При этом может быть учтено большое количество внешних параметров (помимо традиционно принимаемых во внимание частот вращения вала двигателя, выходного вала трансмиссии и нагрузки двигателя) таких, например, как производные этих параметров по времени, температурный режим двигателя, температура масла, полная масса автомобиля и т. д. Возникающие при этом трудности связаны лишь с необходимостью введения дополнительных датчиков и преобразователей;

при необходимости обеспечивается корректирование алгоритма управления как при развитии системы, так и в рамках существующей системы с учетом, например, таких факторов, как изменение характеристик агрегатов вследствие их изнашивания. Следовательно, возможно создание адаптивных систем управления, которые способны изменять свои характеристики в процессе эксплуатации автомобиля с целью обеспечения его наилучших показателей. Для достижения такого эффекта не требуется изменения аппаратурной части системы;

вследствие реализации широких возможностей микропроцессорных систем возможно создание комплексной системы управления агрегатами автомобиля (например, двигателем, сцеплением, коробкой передач);

система управления на базе микропроцессорного комплекта или однокристальной ЭВМ требует минимального объема настройки и регулировок, поскольку они необходимы только для таких вспомогательных элементов системы, как ПЧН, ЦАП и АЦП.

Основными недостатками микропроцессорных систем являются:

относительно высокая стоимость системы вследствие необходимости ее комплектования рядом вспомогательных элементов, из числа которых наиболее дорогостоящими являются устройства ввода-вывода информации. Кроме того, значительная часть расходов по созданию микропроцессорных систем управления приходится на разработку их математического обеспечения;

чувствительность к помехам, которые могут вызывать сбои в работе системы. Это особенно важно для автомобильных микропроцессорных систем управления, поскольку работа агрегатов автомобиля сопровождается значительными помехами в его бортовой сети, а также полевыми (электромагнитными) помехами. Для устранения этого недостатка в настоящее время большое внимание уделяется разработке помехоустойчивых алгоритмов, т. е. таких, которые способны восстанавливать свою работу после непредвиденных сбоев.

Непрерывное совершенствование технологии производства электронных приборов, в том числе элементов микропроцессорных систем управления, обусловливает снижение их стоимости и создает благоприятные предпосылки для расширения их применения. Однако микропроцессорные системы целесообразно использовать в первую очередь для систем управления агрегатами автомобиля со сложными алгоритмами. К таким системам следует отнести антиблокировочные системы управления тормозными механизмами, системы управления гидромеханическими и автоматизированными механическими передачами и, конечно, комплексные системы управления несколькими агрегатами.

Одной из основных проблем создания микропроцессорных систем является разработка и реализация оптимального алгоритма управления. Многие различные микропроцессорные системы отличаются одна от другой в основном составом датчиков и видом алгоритма функционирования, который зависит от целевого назначения системы и сложности решаемых ею задач.

Рассмотрим микропроцессорную систему, разработанную для легкового автомобиля «Фиат — Панда 30». Исполнительным механизмом системы (рисунок 2) является вакуумная сервокамера 20, шток 21 которой через рычаг 22 воздействует на выжимной подшипник 4 сцепления 5. Источником разрежения для вакуумной сервокамеры является впускной коллектор 7 двигателя, соединенный через обратный клапан 13 с вакуумным ресивером 14.

Рисунок 2. Схема размещения элементов микропроцессорной системы управления сцеплением:

1 — коробка передач; 2 — датчик частоты вращения ведомого элемента сцепления; 3 — вал ведомого элемента сцепления; 4 — выжимной подшипник; 5 — сцепление; 6 — датчик частоты вращения коленчатого вала; 7 — впускной коллектор двигателя; 8 — датчик положения дроссельной заслонки; 9 — двигатель; 10 — выключатель рычага переключения передач; 11 — электронный блок управления; 12 — рычаг переключения передач; 13 — обратный клапан; 14 — вакуумный ресивер; 15 — клапан соединения сервокамеры с ресивером; 16 и 18 — электромагниты; 17 — клапан соединения сервокамеры с атмосферой; 19 — полость регулируемого давления сервокамеры; 20 — сервокамера; 21 — шток сервокамеры; 22 — рычаг; 23 — ведомый вал коробки передач; 24 — датчик частоты вращения ведомого вала коробки передач





Рисунок 3. Зависимость Mc = f(L)

При подключении к источнику питания электромагнита 16 открывается управляемый им вакуумный клапан 15, в результате чего вакуумный ресивер соединяется с полостью 19 сервокамеры 20. Если же клапан 15 закрыт, то связь между вакуумным ресивером и полостью 19 сервокамеры прерывается. В случае подключения к источнику питания электромагнита 18 открывается приводимый им воздушный клапан 17, что приводит к соединению полости 19 сервокамеры с атмосферой. При закрытом клапане 17 эта связь прерывается.

Таким образом, при открытии клапана 15 увеличивается разрежение в полости 19 сервокамеры, а при открытии клапана 17, наоборот, уменьшается. Когда оба клапана закрыты, разрежение в полости 19 остается неизменным.

Рисунок 4. Структурная схема микропроцессорной системы управления сцеплением





В зависимости от разрежения в полости 19. сервокамеры меняется положение ее штока 21, и соответственно регулируется момент Мс, передаваемый сцеплением. Из рассмотрения зависимости Мс от перемещения L рычага привода сцепления (рисунке 3) следует, что момент Мс изменяется от нуля до значения Мс тах при перемещении рычага на 13 мм (полный ход рычага составляет 46 мм). Это учитывается алгоритмом системы управления.

Работой клапанов 15 и 17 (рисунок 2) управляет микропроцессорный электронный блок 11 управления, который вырабатывает необходимые команды для включения и выключения электромагнитов 16 и 18 в зависимости от сигналов, получаемых от датчиков частоты вращения 6, 2 и 24 соответственно коленчатого вала, ведомого элемента сцепления, ведомого вала коробки передачи и датчика 8 положения дроссельной заслонки карбюратора. Команду на принудительное выключение сцепления в процессе переключения передач микропроцессорное устройство вырабатывает при поступлении к нему сигнала от выключателя 10, контакты которого замыкаются, когда водитель прикладывает усилие к рычагу переключения передач.

Обработка информации, получаемой от всех элементов системы управления, выполняется центральным микропроцессором ЦПУ типа 8085 с тактовой частотой 2,2 МГц (рисунок 4). Он связан с программируемым постоянным запоминающим устройством ППЗУ с объемом памяти 2 кбайт и оперативным запоминающим; устройством ОЗУ с объемом памяти 256 байт.

В ППЗУ записывается программа алгоритма, контакты, стандартные программы и т. д. ОЗУ используется для записи результатов промежуточных вычислений, текущих значений измеренных величин и других данных, требуемых для функционирования микропроцессорной системы.

Работа системы в реальном масштабе времени, требуемая для выдачи в определенное время команд управления и организации временных задержек, реализуется таймером. Связь между управляющими элементами системы и силовыми исполнительными устройствами (электромагнитами клапанов) осуществляется через так называемые порты ввода-вывода и усилительные каскады. ОЗУ, порты ввода-вывода и таймер выполнены в виде одной большой интегральной схемы (БИС) типа 8156.

Микропроцессоры могут обрабатывать сигналы только в виде двоичного цифрового кода. В связи с этим сигналы от датчиков частоты вращения пк коленчатого вала, частоты вращения пс ведомого вала сцепления и частоты вращения nп ведомого вала. коробки передач, имеющие вид последовательности импульсов, вначале с помощью ПЧН преобразуются в аналоговый сигнал (напряжения постоянного тока соответственно UK, Uc, Ua), а затем с помощью АЦП преобразуются в двоичный код. Также с помощью АЦП осуществляется преобразование аналогового сигнала датчика положения дроссельной заслонки (потенциометра) в цифровой двоичный код. Работой АЦП и ППЗУ управляют ключевые элементы, входящие в микросхему типа 8212.

Для исключения нечеткой работы системы управления в режиме принудительного выключения сцепления, возможной при «дребезге» контактов выключателя ВС сцепления, используется устройство с элементом задержки разрыва цепи ЭЗ.

Рисунок 5. Зависимость угла α открытия дроссельной заслонки от частоты вращения пц

Основной задачей системы управления является регулирование по заданному закону момента Мс в зависимости от угла открытия дроссельной заслонки, частоты вращения коленчатого вала, его ускорения .(замедления) и включения в коробке передач той или иной передачи.

Рисунок 6. Зависимости M=f(nК) и Mc=f(nK) для различных а при микропроцессорной системе управления сцеплением

В зависимости от угла открытия дроссельной заслонки микропроцессор рассчитывает «целевую» частоту вращения пц, которая тем выше, чем на больший угол а открыта дроссельная заслонка (рисунок 5). Система управления непрерывно сравнивает значение nЦ с текущей частотой вращения nKi коленчатого вала и определяет знак разности nKi — nц. Если пц>пкi, то система управления уменьшает момент Мс для того, чтобы снизить нагрузку на двигатель и увеличить частоту вращения пк. Наоборот, при пц<пкi значение Мс увеличивается и частота вращения пк снижается.

Таким образом, в рассматриваемой системе управления параметром обратной связи для системы регулирования момента Мс является разность между истинной и целевой частотами вращения, причем последняя является функцией угла открытия дроссельной заслонки.

Особенность действия системы управления заключается в том, что при постоянстве угла открытия дроссельной заслонки процесс разгона автомобиля в период до окончания пробуксовывания сцепления будет протекать при постоянстве частоты вращения коленчатого вала, которая окажется равной значению пц для данного угла открытия заслонки. Величины моментов Мс в указанные периоды (рисунок 6, точки А, В, С и D) будут равны крутящим моментам двигателя М, развиваемым при данных значениях угла а и пц.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее