145862 (Вода и ее применение в современных технологиях), страница 4

2016-08-01СтудИзба

Описание файла

Документ из архива "Вода и ее применение в современных технологиях", который расположен в категории "". Всё это находится в предмете "технология" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "технология" в общих файлах.

Онлайн просмотр документа "145862"

Текст 4 страницы из документа "145862"

Растворимость в воде газов различна и зависит от ряда факторов: температуры, давления, минерали­зации, присутствия в водном растворе других газов. С повышением температуры до 90 °С растворимость газов в воде снижается, а затем возрастает. Так, в 1 л воды при температуре 20 °С растворяется 665 мл 4630, аммиака—I 300000. Как видно из этих приме­ров, растворимость зависит и от состава самого газа.

Повышение давления влечет за собой увеличение растворимости газов. Например, при давлении 25атм в 1 л воды растворяется углекислого газа 16,3 л, а при 53 атм — 26,9.

При повышении минерализации воды раствори­мость газа падает. Так, при 0°С растворимость кислорода в 1 л воды с минерализацией менее 1 г/л составляет 49 мл, а при минерализации 30 г/л*—только 15, т. е. в три раза меньше.

И
з всего сказанного можно сделать вывод о том, что растворимость газа в природной воде при посто­янных температуре и степени минерализации прямо пропорциональна давлению газа на жидкость, для газовых смесей она пропорциональна давлению каж­дого газа в отдельности. Но это справедливо для сравнительно небольших давлений. При значитель­ных давлениях, например на больших глубинах в океане, где давление подчас достигает сотен и даже тысячи атмосфер, на растворимость газов в воде влияет не парциальное давление отдельных газов, а общее давление всего столба воды, но об этом речь впереди.

В растворенном газе дождевой воды углекислоты в 33 раза больше, чем в воздухе, а кислорода в два раза больше.

Углекислый газ поступает в атмосферу (наземную и подземную) преимущественно за счет окисления, брожения и гниения органических остатков и дыха­ния водных организмов. В атмосфере его содержание при парциальном давлении 0,0003 атм невелико - около 0,03%.

В 1 л чистой воды при таком давлении и темпе­ратуре 15 °С может раствориться всего лишь 0,59 мг углекислого газа. В земных недрах на значительных глубинах его содержание может достигать очень больших значений, и источником этого газа чаще служат глубинные процессы выделения его из вещества мантии и нежней литосферы.

2.3Растворимость твердых веществ в воде.

Процесс растворения твердых веществ в воде можно рассматривать как борьбу двух электростатических сил с противоположными зарядами, присущих ионам твердого вещества, с од­ной стороны, и ионам и молекулам воды — с другой. На рис. 9 показана схема процесса растворения кристалла поваренной соли (NaCI). Оторванные от кристалла заряженные ионы хлора и натрия окру­жаются молекулами воды и образуют вокруг иона твердого вещества гидратную оболочку. Иногда она сохраняется даже в том случае, когда твердое вещество выпадает из насыщенного раствора в оса­док. Например, выпадающий из раствора при его пересыщении сульфат кальция (Са[S04]) захваты­вает воду (называемую кристаллизационной) и ста­новится гипсом (Ca[S04] · 2H20). Процесс может идти и в обратную сторону. Аналогичное происходит и с гематитом (железным блеском Fe2Оз), переходя­щим при гидратации в лимонит (бурый железняк HFeO2 · nH2O, где п достигает 4) и т. п.



Процессы гидратации могут происходить настоль­ко быстро и сопровождаться столь значительным увеличением объема, что приводят к нарушениям земной коры, подобно тектоническим дислокациям.

Растворы представляют собой сложные промежу­точные системы между физическими смесями и хими­ческими соединениями. Процесс растворения — про­цесс диффузионный. При достижении предела раст­ворения (при известных температуре и давлении) наступает динамическое равновесие между количе­ствами как растворяемого вещества, так и выпадаю­щего из раствора, образуется насыщенный, или кон­центрированный, раствор. Д. И. Менделеев относил процесс растворения не к физическим, а к хими­ческим процессам на том основании, что нередко при растворении выделяется тепло. Это происхо­дит вследствие химического взаимодействия между растворяемым веществом и растворителем. Процент­ное содержание воды в некоторых минералах очень велико. Например, мирабилит Na2S04·10H20 содержит 56 вес. % воды, гидробазалюминит А14[(ОН)10SO4]3 · 36Н2O — 60, сода Na2СOз·10H2О — 55 и т. д.

Твердое вещество образует водный раствор из молекул и ионов с диаметром 1—10А. Но в воде могут содержаться и более крупные частицы: от 10 до 100А, которые образуют чаще всего не истинные, а коллоидные растворы. Если находящиеся в воде частицы еще крупнее, то они не образуют растворов, а создают механические суспензии, взвеси.

Химический состав природных растворов весьма разнообразен. Существует множество классификаций их, построенных по разным принципам. Форма вы­ражения результатов анализов может быть различ­ной: солевая, окисная, атомная и ионная. Последняя, хотя, как и другие, условна, однако в настоящее время признана наиболее удобной, поскольку позво­ляет выражать все, что содержится в воде, вплоть до живых организмов. Именно так и стремился пос­тупать автор классической монографии о природных водах академик В. И. Вернадский. По его классифи­кации природные воды разделялись на 485 видов минералов группы воды (гидридов), причем общее их количество, по его мнению, в действительности должно превысить 1500. Конечно, для практических целей такая классификация затруднительна.

В настоящее время все природные воды по пре" обладающему аниону делят на три класса: 1) хлоридные, 2) сульфатные и 3) гидрокарбонатные.

Каждый класс подразделяется в свою очередь на три группы: 1) кальциевую, 2) магниевую и 3) натриевую, т. е. классификация проводится по катионам. Группы можно делить еще по трем типам, но мы эту классификацию рассматривать не будем. По преобладающему растворенному газу воды могут быть подразделены на азотные, сероводородные, углекис­лые и т. д.

Самыми главными и наиболее распространенными компонентами в природных растворах являются хлор, а затем натрий, далее следуют ионы сульфатный ,гидрокарбонатный HCO3- и карбонатный , кальций Са2+, магний Mg2+ и др.

На рис. 11 показана зависимость растворимости некоторых солей хлора от температуры. Кривые недвусмысленно показывают, что из четырех солей хлора наибольшей растворимостью обладает хлори­стый кальций, а наименьшей хлористый натрий.

Насколько возрастает растворимость солей с по­вышением температуры и давления, рассмотрим на примере самого распространенного в водной среде вещества — хлористого натрия NaCl. При темпера­туре 10°С и давлении 1 бар он растворяется пре­дельно—257 г/кг (насыщенный раствор), а при температуре 500 0С и давлении 1 кбар—в 1571 раз больше (561000 г/кг), т. е. по массе вода как растворитель в 56 раз легче, чем растворяемая соль. В большинстве случаев то же самое происходит и с другими солями. Однако встречаются и исключения. В качестве примера можно привести хромовокислый кальций СаСrO4, растворимость которого при темпе­ратуре 0°С 15,4, а при 100 0С—только 7,1 г/кг. Так же ведут себя гипс CaSO4 · 2H2O в интервале температур 40—100°С, сульфат натрия Na2S04 при 25—100°С и некоторые другие соли.

2.4Взаимодействия воды с растворенным в ней веществом.

Выше было сказано, что при некоторых условиях во­да способна расщепляться на два иона: положительно заряженный гидратированный катион Н+ (Н3О+) и отрицательно заряженный анион ОН- (называемый также гидроксилом). Но вода способна не только расщепляться сама, но и расщеплять другие вещества, в ней растворенные, вступая при этом в обменные реакции с присоедине­нием элементов воды (ОН- и Н+. Этот процесс но­сит название гидролиза. В качестве одного из примеров можно привести гидролиз хлористого желе­за, протекающий по следующей схеме:

FeCl3+ЗН2О Fe(OH)3 + ЗНСl.

В результате гидролиза мы получаем гидрат оки­си железа и соляную кислоту.

Останавливаться сейчас подробнее на гидролизе мы не будем, но просим его запомнить для лучшего понимания последующего. Отметим лишь, что гидро­лизом объясняются белящие свойства хлора, моющее действие мыла. Гидролиз имеет большое применение в промышленности: в паточном производстве, при получении спирта из древесины и во многих других областях производства.

Учитывая тесный контакт подземной воды с вме­щающими ее породами и ее высокую растворяю­щую способность, естественно ожидать влияния на формирование химического состава раствора, каким является природная подземная вода, химического состава вмещающих воду пород. Это иногда и наблюдается в верхних горизонтах литосферы до глубин, различных в разных местах, но не превы­шающих зоны возможного проникновения в породы современных поверхностных вод. Разумеется, мно­гое здесь зависит от растворимости пород и от цело­го ряда превходящих факторов, таких, как темпера­тура, давление, биохимические процессы, наличие тех или иных уже растворенных веществ, в част­ности растворенных или свободных (называемых спонтанными) газов.

Во всяком случае, при циркуляции воды в извест­няках или доломитах и при их выщелачивании обра­зуется гидрокарбонатно-кальциевая, жесткая, вода, а в случае смывания залежей поваренной соли, хлоридно-натриевая. Образование гидрокарбонатно-натриевых (содовых, Na2HCO3) вод объясняется иногда разложением полевых шпатов (например, плагиок­лаза NaAlSi3O8) в присутствии углекислого газа СО2. Воды сульфатного класса в присутствии кисло­рода могут образовываться при их циркуляции в трещиновато-пористых породах, богатых сульфид­ными минералами.

Во всех перечисленных случаях повышенные мине­рализации вод (до рассолов включительно) чаще возможны при интенсивном природном выпаривании подобных растворов. Например, в озерах в районах с жарким климатом. Мы не разделяем мнение мно­гих исследователей, привлекающих эти процессы для объяснения высоких концентраций глубинных рассольных вод.

Химический состав природных растворов выра­жается самыми различными формулами. Вот как с помощью формулы Курлова могут быть выражены результаты анализа морской воды:

Как отмечалось выше, наиболее предпочтительной формой выражения результатов анализа воды явля­ется ионная. При этом содержание того или иного иона дается в граммах или миллиграммах на литр воды. Однако для полной характеристики свойств воды ионная форма недостаточна. В связи с этим наряду с ионной пользуются миллиграмм-эквивалент­ной формой. Пересчет данных анализа на милли­грамм-эквивалентную форму осуществляется деле­нием количества миллиграммов каждого иона в 1 л воды на его эквивалентную массу. Например, разде­лив 10722 мг натрия на его эквивалентную массу, равную 23, получим 466 мг-экв. натрия. Сумма миллиграмм-эквивалентов для катионов и анионов должна быть одинаковой, поскольку каждому экви­валенту катиона соответствует эквивалент аниона.

Перевод результатов анализа вод в процент-экви­валентную форму производится для того, чтобы иметь возможность сопоставить воды различной минерали­зации и получить более ясное представление о соотношениях между ионами в одной и той же воде. При­няв суммы миллиграмм-эквивалентов анионов и катионов, содержащихся в 1 л воды, за 100%, рассчи­тывают процент количества миллиграмм-эквивалентов каждого иона по отношению к этим суммам (табл. 2.)





Таблица 2

Содержание главных компонентов в водах мирового океана

Компоненты

Содержание

мг/кг

мг-экв.

%-экв

Катионы

Na+

10722

466

86

Mg+

1297

53

10

Ca2+

417

10

2

K+

382

10

2

Всего

12818

100

Анионы

Cl-

19337

545

95

SO4-

2705

28

4.8

HCO3-

97

2

0.2

Br2-

66

-

-

Co3-

6

-

-

Всего

22211

100

Подобный способ показа химического состава в практических дисциплинах о воде удобен и прост, но для научных построений совершенно не пригоден. Это сразу станет ясно, если мы попытаемся изобразить геохимический состав Мирового океана, куда, естественно, должен войти и состав всего его биоце­ноза п. В. И. Вернадский пользовался выражением того или иного состава только с помощью атомных процентов.

Хотя данная глава посвящена химическим свойст­вам воды, мы совершенно сознательно опускаем такие, бесспорно, важные аспекты этой темы, как ионное равновесие растворов, произведение раствори­мости, активность ионов и ряд других, отсылая заинтересованного читателя в зависимости от его подготовки к многочисленным учебникам химии для средней или высшей школы. Одновременно мы должны предупредить, что в этих учебниках учтены обычные условия физико-химических характеристик, с которыми человек имеет дело в быту или на про­изводстве, и совершенно не касаются сверхкритических условий, как больших глубин земных недр, так и далеких от Земли космических пространств.

Глава 3Использование воды в современной технике и технологиях.

3.1Морская вода в промышленности

Без воды Мирового океана немыслима жизнь на Земле, невозможен круговорот веществ, энергии в природе. В данной главе пойдет речь не о глобальных физических процессах, а об участии воды в морском хозяйстве, в котором вода является сырьем, так как «уже претерпела известное изменение при посредстве труда»(Маркс К., Энгельс Ф. Соч., т.25, ч.I, с.190).

Долгое время соленую воду океана рассматривали только как «агрессивную» среду, которую в процессе производства следует нейтрализовать, ибо ее невозможно использовать. Однако изменение технологии с учетом физических и химических свойств морской воды позволяет применять ее в качестве полезного компонента. В промышленности морская вода используется при производстве ряда продуктов охлаждения агрегатов, обогащения полезных ископаемых, транспортировке сырья и отходов, в качестве питательной воды в парогенераторах, для поддержки пластового давления на нефтегазопромыслах и т. д. Круг ее применения непрерывно расширяется. Уже в 2000 году в США за счет морского водопотребления удовлетворяется одна треть промышленных потребностей. Растут масштабы использования морской воды в других странах, в том числе в Японии, где ожидаемый дефицит водных ресурсов предполагается покрывать за счет морской воды.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее