Tunnel (Туннелирование в микроэлектронике)

2016-08-01СтудИзба

Описание файла

Документ из архива "Туннелирование в микроэлектронике", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "Tunnel"

Текст из документа "Tunnel"

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛАРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОННИКИ

Кафедра химии

Факультет компьютерного проектирования

КУРСОВАЯ РАБОТА

по курсу: «Физико-химические основы микроэлектроники и технологии РЭС и ЭВС»

на тему:

«ТУННЕЛИРОВАНИЕ В МИКРОЭЛЕКТРОНИКЕ »

Выполнил: Приняла:

студент гр. 910204 Забелина И. А.

Шпаковский В.А.

Минск 2001 г.

СОДЕРЖАНИЕ

стр.

1. Туннельный эффект……………………………………………………………………………3

2. ПРОЯВЛЕНИЕ В НЕОДНОРОДНЫХ СТРУКТУРАХ, ИСПОЛЬЗОВАНИЕ В УСТРОЙСТВАХ МИКРОЭЛЕКТРОНИКИ

2.1 Контакт металл-металл…………………………………………………………...…………..5

2.2 Структура металл-диэлектрик-металл………….……………………………………………8

2.3 Токоперенос в тонких плёнках………………………………………………………………10

2.4 Туннельный пробой в p-n-переходе…………………………………………………………12

2.5 Эффекты Джозефсона………………………………………………………………………...13

2.6 Эффект Франца-Келдышева………………………………………………………………….15

3 Туннельный диод…..…………………………………………………………………………17

Литература………………………………………………………………………………………….20

  1. Туннельный эффект

Рассмотрим поведение частицы при прохождении через потенциальный барьер. Пусть частица, движущаяся слева направо, встречает на своём пути потенциальный барьер высоты U0 и ширины l (рис. 1.1). По классическим представлениям движение частицы будет таким:

U(x) - если энергия частицы будет больше высоты барьера (E>U0),

то частица беспрепятственно проходит над барьером;

U0 - если же энергия частицы будет меньше высоты барьера

E (E0), то частица отражается и летит в обратную сторону;

сквозь барьер частица проникнуть не может.

I II III Совершенно иначе поведение частицы по законам квантовой

механики. Во-первых, даже при E>U0 имеется отличная от ну-

0 l x ля вероятность того, что частица отразится от потенциального

Рис.1.1 Прохождение частицы барьера и полетит обратно. Во-вторых, при E0 имеется ве-

через потенциальный барьер. роятность того, что частица проникнет «сквозь» барьер и ока-

жется в области III. Такое поведение частицы описывается уравнением Шрёдингера:

. (1.1)

Здесь - волновая функция микрочастицы. Уравнение Шрёдингера для области I и III будет одинаковым. Поэтому ограничимся рассмотрением областей I и II. Итак, уравнение Шрёдингера для области I примет вид:

, (1.2)

введя обозначение:

, (1.4)

окончательно получим:

(1.5).

Аналогично для области II:

, (1.6)

где . Таким образом, мы получили характеристические уравнения, общие решения которых имеют вид:

при x<0, (1.7)

при x>0 (1.8)

Слагаемое соответствует волне, распространяющейся в области I в направлении оси х, А1- амплитуда этой волны. Слагаемое соответствует волне, распространяющейся в области I в направлении, противоположном х. Это волна, отражённая от барьера, В1- амплитуда этой волны. Так как вероятность нахождения микрочастицы в том или ином месте пространства пропорциональна квадрату амплитуды волны де Бройля, то отношение представляет собой коэффициент отражения микрочастицы от барьера.

Слагаемое соответствует волне, распространяющейся в области II в направлении х. Квадрат амплитуды этой волны отражает вероятность проникновения микрочастицы в область II. Отношение представляет собой коэффициент прозрачности барьера.

Слагаемое должно соответствовать отражённой волне, распространяющейся в области II. Так как такой волны нет, то В2 следует положить равным нулю.

Для барьера, высота которого U>E, волновой вектор k2 является мнимым. Положим его равным ik, где является действительным числом. Тогда волновые функции и приобретут следующий вид:

(1.9)

(1.10)

Так как , то это значит, что имеется вероятность проникновения микрочастицы на некоторую глубину во вторую область. Эта вероятность пропорциональна квадрату модуля волновой функции :

. (1.11)

Наличие этой вероятности делает возможным прохождение микрочастиц сквозь потенциальный барьер конечной толщины l (рис. 1.1). Такое просачивание получило название туннельного эффекта. По формуле (1.11) коэффициент прозрачности такого барьера будет равен:

, (1.12)

где D0 – коэффициент пропорциональности, зависящий от формы барьера. Особенностью туннельного эффекта является то, что при туннельном просачивании сквозь потенциальный барьер энергия микрочастиц не меняется: они покидают барьер с той же энергией, с какой в него входят.

Туннельный эффект играет большую роль в электронных приборах. Он обуславливает протекание таких явлений, как эмиссия электронов под действием сильного поля, прохождение тока через диэлектрические плёнки, пробой p-n перехода; на его основе созданы туннельные диоды, разрабатываются активные плёночные элементы.

2.1 КОНТАКТ МЕТАЛЛ-МЕТАЛЛ

Рассмотрим плотный контакт двух металлов М1 и М2 с разными работами выхода А1 и А2 (рис. 2.1.1).

A1 A2


EF1 n21


n12 EF2

d



M1 M2

Рис. 2.1.1 Энергетическая диаграмма контакта двух металлов в начальный момент времени

Вследствие того, что уровень Ферми EF1 в М1 (уровень Ферми это то значение энергии уровня, выше которого значения энергии электрон принимать не может при Т=0 К) находится выше, чем EF2 в М2, соответствующие работы выхода А12. Если Т 0 К, то при контакте металлов между ними начнётся обмен электронами за счёт термоэлектронной эмиссии. При Т=0 К электроны за счёт туннелирования будут переходить из М1 в М2, так как напротив заполненных уровней в М1 будут находиться свободные уровни в М2.

В общем случае поток электронов n12 в первоначальный момент времени будет значительно больше, чем поток n21. При этом из-за оттока электронов М1 будет заряжаться положительно, а М2- отрицательно. Электрон, переходящий из М1 в М2, переносит заряд –q, создавая разность потенциалов на контакте –V. Последующие электроны должны преодолевать возникающий потенциальный барьер –qV, величина которого непрерывно увеличивается с ростом числа перешедших в М2 электронов. Работа, совершаемая электронами по преодолению энергетического барьера –qV, переходит в потенциальную энергию электронов, в результате чего все энергетические уровни в М1 опускаются, а в М2 подымаются (рис. 2.1.2).

A2


qVk A1


n21

EF1 EF2

n12


d


M1 M2

Рис. 2.1.2 Энергетическая диаграмма контакта двух металлов в равновесном состоянии

Этот процесс будет происходить до тех пор, пока уровни Ферми в М1 и М2 не установятся на одной высоте. После чего против заполненных уровней М1 окажутся занятые уровни в М2 с той же плотностью электронов. При этом потенциальный барьер для электронов, движущихся слева направо, станет равным потенциальному барьеру для электронов, движущихся из М2 в М1, и поток n12 станет равным n21. Между металлами устанавливается равновесие, которому отвечает контактная разность потенциалов:

. (2.1.1)

Величина контактной разности потенциалов составляет от десятых долей вольта до нескольких вольт, но при этом из-за большой концентрации носителей заряда в металлах в создании Vk участвуют всего около одного процента электронов, находящихся на поверхности металла. В результате толщина образующего потенциального барьера очень мала.

Как было сказано выше в первоначальный момент времени при контакте металлов, n12>n21 и соответствующие термоэлектронные токи I1>I2. Для этих токов мы можем записать уравнения термоэлектронной эмиссии:

; (2.1.2)

, (2.1.3)

где А* - постоянная Ричардсона; S –площадь контакта.

После выравнивания уровней Ферми поток I2 останется неизменным, а поток I1 уменьшиться, так как для того, чтобы перейти электрону из М1 в М2 кроме преодоления работы выхода А1 ему необходимо преодолеть разность потенциалов в зазоре Vk. Тогда ток I1 станет равным:

. (2.1.4)

При равенстве уровней Ферми двух металлов I1=I2 и результирующий ток через контакт равен нулю. Величину тока, текущего из одного металла в другой в равновесном состоянии, обозначим как Is=I1=I2.

Теперь рассмотрим процессы, происходящие в контакте при пропускании через него внешнего тока. Пусть внешнее поле прикладывается так, что оно складывается с напряжением Vk. Тогда полное напряжение на контакте будет равным V1=Vk+V.

Электронный ток справа налево I2=Is останется неизменным, а ток слева направо уменьшиться, так как высота энергетического барьера для этих электронов увеличится. Уравнение для тока I1 можно записать в виде:

. (2.1.5)

Так как Is=I1 в выражении (2.4), то получим:

. (2.1.6)

Результирующий ток будет направлен справа налево и равен:

. (2.1.7)

В случае, если внешняя разность потенциалов приложена в обратном направлении, то ток I1 будет больше, чем I2=Is. В этом случае ток I1 равен:

, (2.1.8)

тогда результирующий ток равен:

. (2.1.9)

Если току и напряжению приписывать положительный знак, когда они направлены слева направо, то выражение (2.1.7) для результирующего тока примет такой же вид, как и выражение (2.1.9). Поэтому выражение (2.1.9) называют уравнением вольтамперной характеристики контакта двух металлов.

Из выражения (2.1.9) видно, что контакт металл-металл обладает выпрямляющим действием. При V>0 ток увеличивается по экспоненте, а при V<0 –уменьшается.

В обычных условиях контакт металл-металл является невыпрямляющим, так как при плотном контакте, толщина возникающего потенциального барьера –qVk очень мала, и он будет прозрачен для туннельного просачивания электронов. Если же ширина зазора между металлами каким-либо образом увеличится, то туннельный эффект можно исключить и все полученные выводы будут справедливы.

Проблема электрического контакта двух металлов представляется особенно существенной в микроэлектронике. Это обусловлено тем, что в микроэлектронных устройствах используются рабочие напряжения, близкие по величине к контактным разностям потенциалов.

2.2 СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-МЕТАЛЛ

Туннельный механизм прохождения электронов сквозь тонкие диэлектрические слои может проявляться и быть преобладающим
при малой концентрации носителей тока в плёнке диэлектрика, сравнительно высоких барьерах на поверхности диэлектрика, низких температурах и достаточно малых, толщинах плёнки. Резуль­тирующий
туннельный ток из одного электрода в другой сквозь диэлектрический
слой находится как раз­ность встречных туннельных составляющих
токов в направлении х, перпендикулярном плоскости плёнки. Со­ставляющие этой разности определяют интегрированием произведения
концентрации электронов в электродах на прозрачность барьера по
всем значениям энергии электронов. Полученное таким образом уравне­ние для туннельного тока имеет вид:

, (2.2.1)

где n1(Е) и n2(Е)- концентрации электронов с энергиями от Е до Е+dE в первом и втором электродах соответ­ственно; D(Е, py, pz)- вероятность проникновения электрона с энергией Е сквозь
потенциальный барьер (про­зрачность барьера), h- постоянная
Планка, рy, рz,- компоненты импульса электрона в плоскости, параллельной плоскости плёнки.

Зоммерфельдом А. И Бете Г. был рассчитан туннельный ток
сквозь вакуумный зазор между двумя одинако­выми металлическими
электродами (прямоугольный потенциальный барьер). Вольт-амперная
характери­стика системы при малых напряжениях имеет вид:

, (2.2.2)

и при больших напряжениях (qu> +EF):

, (2.2.3)

где - высота потенциального барьера; d- ширина зазора; u- -
приложенное напряжение; m- масса электрона. Из полученных
выражений видно, что при малых напряжениях характеристика
линейна, а при увеличении на­пряжения ток резко возрастает.

Однако реальный барьер имеет более сложную форму. Поэтому
детальный расчёт вольт-амперной характери­стики должен производиться с учётом сил изображения, различия эффективных масс носителей заряда в металле и диэлектрике, а также с учётом пространственного заряда электронов, тун­нелировавших из металла в зону проводимости диэлектрика, и электронов, попавших на ловушки в диэлектрике. Симмонсом Дж. был предложен метод расчёта туннельного тока для барьера произ­вольной формы. Он ввёл понятие о барьере средней величины. Этот метод принципиально позво­ляет вычислить туннельный ток с учётом названных факторов, однако при этом получаются очень громоздкие выражения. Анализ результатов расчёта по методу Симмонса показывает, что при малых напряжениях вольтамперная характеристика является линейной, а при больших напряжениях пере­ходит в экспоненциальную зависимость. При дальнейшем увеличении напряжения туннельный ток ограничивается пространственным зарядом в диэлектрике. На рис. 2.2.1 показаны расчётные вольт-амперные характеристики с учётом пространственного заряда.

Из рисунка видно, что большой про­странственный заряд может сильно ограничивать туннельный ток сквозь слой диэлектрика. Большое количество экспериментальных работ было вы­полнено по изучению туннельного прохождения электронов сквозь тонкие диэлектрические слои. Плёнки диэлектриков обычно создавались либо термическим окислением металлов, либо распыле­нием в вакууме. Исследованию были подвергнуты плёнки Al2O3, Ta2O5, TiO2, Сu2O, Сu2S, SiO, GeO2, и других соединений. Практически во всех системах наблюдалось качественное совпадение экспериментальных вольт-амперных характеристик с расчётными. В начале имеет место линейное возрастание тока с ростом напряжения, затем оно пе­реходит в экспоненциальное с последующим замедлением роста тока. Последнее обстоятельство, как и предполагалось при теоретическом рас­чёте, вызвано ловушками в диэлектрических слоях. При соответствующем подборе высоты контакт­ного барьера, эффективной площади структуры, эффек­тивной массы электрона в диэлектрике и дру­гих параметров наблюдается количественное совпаде­ние. На рис. 2.2.2 приведена вольт-амперная ха­рактеристика туннельного тока сквозь слой А12О3 тол­щиной d=2,3 нм. Точками показаны экспериментальные результаты, сплошной линией – расчётные. Наблюдаемые в отдельных случаях количественные расхождения в теоритических и экспериментальных результах вызваны, по-видимому, несовершенством структуры и геометрии плёнок.


j, а/см2

107 1

2

103 3


10-1

10-5

10-9

1 10 100 1000 u, B

Рис. 2.2.1 Расчётные вольт-амперные характеристики туннельного тока:

1 – без учёта пространственного заряда;

2 – с учётом пространственного заряда подвижных носителей;

3 – с учётом пространственного заряда на ловушках при большой их плотности.

j, а/см2

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее