kursovik (Исследование атмосферы планеты Венера), страница 4

2016-08-01СтудИзба

Описание файла

Документ из архива "Исследование атмосферы планеты Венера", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "kursovik"

Текст 4 страницы из документа "kursovik"

На вход рассматриваемого согласованного фильтра поступает напряжение , которое содержит как синхронизирующее, так и телеметрические сигналы. Воздействие на согласованный фильтр телеметрических слов сопровождается образованием дополнительных «выбросов» напряжения на выходе этого фильтра. Для предотвращения ложных срабатываний порогового устройства под действием таких выбросов коэффициенты взаимной корреляции между синхронизирующим сигналом и отдельными телеметрическими словами должны иметь незначительную величину.

В инерционной системе кадровой синхронизации сигналы, выделенные с помощью согласованного фильтра, могут использоваться для автоматической подстройки частоты местного генератора синхронизирующих сигналов. Постоянная времени инерционной системы значительно превышает длительность синхронизирующего сигнала . Следовательно, в установившемся режиме обеспечивается хорошая фильтрация помех, и высокая точность определения начала кадра. Недостатком инерционной системы является значительное время обнаружения слова кадровой синхронизации, а также возможность срыва слежения под действием помех.

Пословная синхронизация предназначается для определения границ отдельных команд в составе кадра. Существуют различные способы осуществления пословной синхронизации. Способ, который мы будем использовать, основан на использовании специальных разделительных сигналов (Рисунок 7 – заштрихованные импульсы). При синхронной непрерывной передаче сообщений разделительные сигналы имеют периодический характер, поэтому в спектре модулирующего сигнала радиолинии возникает регулярная составляющая на частоте следования слов сообщения . После детектирования принятого радиосигнала эта составляющая выделяется с помощью узкополосного фильтра и используется для формирования сигналов пословной синхронизации. Такая система синхронизации является инерционной.

Посимвольная синхронизация используется при посимвольном приеме кодовых слов и обеспечивает разделение элементарных сигналов, соответствующих различным позициям кодового слова. Требования к точности посимвольной синхронизации зависят от используемого способа обработки элементарных информационных сигналов в приемнике. При обработке, близкой к оптимальной, а она в нашем случае именно такая, необходимо достаточно точное определение границ этих сигналов. Требования к точности синхронизации возрастают с уменьшением длительности элементарных сигналов.

Рисунок 9 Функциональная схема инерционной системы посимвольной синхронизации

Для выделения сигналов посимвольной синхронизации непосредственно используется последовательность принимаемых информационных символов. На Рисунок 9 показана функциональная схема инерционной системы посимвольной синхронизации. В результате дифференцирования сигнала , образуется последовательность импульсов, временное положение которых соответствует границам между соседними символами «1» и «0». Эта последовательность поступает на временной дискриминатор, который вырабатывает управляющее напряжение, пропорциональное временнóму рассогласованию между входной и опорной последовательностью импульсов. Последняя и используется в качестве сигналов посимвольной (тактовой) синхронизации. Опорная последовательность вырабатывается генератором синхронизирующих сигналов. С помощью управляющего напряжения изменяется частота следования импульсов опорной последовательности, тем самым обеспечивается автоматическая подстройка генератора синхронизирующих сигналов.

Анализ таких систем имеет целью определить флюктуации моментов временных меток относительно положения, соответствующих идеальной ра­боте. В нашем случае мы будем считать, что система синхронизации работает идеально. В качестве показателя точности можно взять среднеквадратическую ошибку, которая для нормальной работы должна быть много меньше длительности одного символа.

Борьба с импульсными помехами

До сих пор предполагалось, что помехи в линии являются флуктуационными и обладают нормальным законом распределе­ния мгновенных значений. Этот случай относится к одному из пре­дельных и часто встречающихся. Вторым предельным сличаем, яв­ляются импульсные помехи, т. е. последовательность случайных по форме, величине и времени возникновения импульсов, длитель­ность которых в среднем мала по сравнению с интервалами меж­ду ними. Импульсные помехи часто являются искусственными по происхождению. Это позволяет бороться с ними, применяя их экра­нировку в точках возникновения. Для предотвращения распространения помех по проводам, питающим искрящее устройство, включают фильтры нижних частот, ослабляющие энергию высоко­частотной части спектра помехи.

Единой теория борьбы с импульсными помехами пока не со­здано вследствие их большого разнообразия, а также трудностей нахождения многомерного закона распределения помехи, необхо­димого для синтеза оптимального приемника. Для различных моделей импульсных помех можно найти одномерные за­коны распределения позволяющие определять отношение сигнал/помеха для отдельных методов борьбы с импульсными помехами и таким образом сопоставлять их эффективность.

Для ослабления воздействия импульсных помех на приемное устройство используются различные методы, один из которых мы будем использовать. Выбранная схема будет реализована в усилителе промежуточной частоты (УПЧ).

Рисунок 10 Структурная схема приема по методу ШОУ

Структурная схема, используемая при методе ШОУ, приведена на Рисунок 10. Она состоит из широкополосного фильтра (Ш), ог­раничителя (О) и узкополосного фильтра (У). Полоса выби­рается так, чтобы выполнялось условие:

,

где — предполагаемая средняя длительность импульсов помех.

Этим обеспечивается незначительное «размытие» импульсов помехи, которое имело бы место при непосредственном воздейст­вии импульсов на узкополосный фильтр, согласованный по полосе с сигналами. Ограничитель «обрезает» выбросы, обусловленные импульсными помехами, способствуя этим увеличению отношения сигнал/помеха. Полоса пропускания узкополосного фильтра согласована с полосой сигналов. Этим обеспечивается ослабление влияния флуктуационной составляющей помех.

Рисунок 11 Структурная схема бортового приемника искусственного спутника Венеры

Расчет

Определение параметров имитационной модели

  1. Источник дискретных сообщений:

    • квантованные отсчеты случайного нормального коррелированного процесса задаются как V(1) = 2. Исходное сообщение представляет собой случайный процесс с заданным матожиданием и дисперсией. Корреляционная функция этого процесс задана соотношением . Перед квантованием процесс ограничивается сверху и снизу . Этот интервал квантуется равномерно на уровней. Сообщение передается дискретно с интервалом и округляется до ближайшего уровня;

    • матожидание исходного сообщения задается как A(1) = 0;

    • среднеквадратическое отклонение сообщения задается как A(2) = 2.1;

    • коэффициент корреляции задается как A(3) = 0.9;

    • верхняя граница квантуемой величины  [В] задается как A(5) = 6.3;

    • нижняя граница квантуемой величины  [В] задается как A(6) = -6.3;

    • количество уровней квантования .

  2. Кодирующее устройство:

    • ортогональный код V(2) = 4;

  3. Радиоканал:

    • радиоканал, использующий сигнал КИМ-ФМ и приемный тракт с линейным усилением, синхронным детектором и интегратором V(7) = 1, V(9) = 1. При моделировании радиоканала предполагается, что тракт усиления и преобразования частоты до синхронного детектора линейны и не искажают формы символа сигнала КИМ-ФМ, которая остается прямоугольной. Синхронный детектор выделяет видеоимпульсы. Интегрирование символа начинается при поступлении начальной метки из системы символьной синхронизации и заканчивается через заданное время при поступлении импульса “сброса”. На вход радиоканала передается напряжение, накопленное к концу интегрирования.

    • девиация фазы равна , что соответствует A(172) = 1;

    • длительность интегрирования, отнесенная к длительности символа A(171) = 1, т. е. время интегрирования равно длительности символа;

  4. Аддитивные помехи:

    • широкополосная шумовая помеха. На входе радиоканала такая помеха представляет собой “белый” шум.

    • параметром модели помехи является дисперсия . Таким образом, A(151) = 1.173;

  5. Случайная импульсная помеха:

    • в данной модели мы не можем учесть случайную импульсную помеху, так как не выполняется условие 1;

  6. Замирание амплитуды сигнала (фединг):

    • замирания амплитуды отсутствует V(6) = 1;

  7. Временное положение меток системы символьной синхронизации:

    • флюктуация временного положения меток отсутствуют (символьная синхронизация идеальная) V(3) = 1;

    • номинальное положение метки , соответственно A(131) = 0;

  8. Флюктуация фазы опорного напряжения синхронного детектора:

    • идеальный синхронный детектор V(4) = 0;

  9. Декодирующее устройство:

    • прием кодового слова в целом V(8) = 5;

  10. Продолжительность эксперимента:

    • продолжительность машинного эксперимента определяется объемом исследуемой выборки сообщений (кодовых слов). Возьмем количество слов равное количеству сообщение переданных за сеанс связи M = 4600.

Анализ результатов расчета и моделирования

Расчеты, проведенные при выборе базового варианта радиолинии, дали следующие показатели достоверности приема информации:

  • вероятность отказа от декодирования – ;

  • вероятность ошибки кодового слова – ;

В результате моделирования получены следующие оценки достоверности:

  • вероятность отказа от декодирования – ;

  • вероятность ошибки кодового слова – ;

При моделировании была взята выборка командных слов, что соответствует длительности сеанса 2.667 секунд.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее