240-2446 (Измерение параметров АЦП)

2016-08-01СтудИзба

Описание файла

Документ из архива "Измерение параметров АЦП", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "240-2446"

Текст из документа "240-2446"

13


Министерство общего и профессионального образования РФ

-------------------------------------------------------------------------------------------------------

Новгородский Государственный Университет

им. Ярослава Мудрого

кафедра ФТТиМ

Контроль параметров АЦП

Реферат по дисциплине:

Испытания изделий электронной техники.

Выполнил:

Студент группы 4031

_______Галинко В.Ю.

«___»_____________1999

Проверил:

Преподаватель каф. ФТТиМ

_______Крутяков.Л.Н.

«___»_____________1999

Новгород

1999

Содержание

Введение

3

1. Основные структуры ИМС АЦП

4

2. Характеристики ИМС АЦП

7

3. Контроль статических параметров ИМС АЦП

13

4. Контроль динамических параметров ИМС АЦП

19

Список использованных источников

23

Введение

Цифро-аналоговые и аналого-цифровые преобразовате­ли АЦП находят .широкое применение в различ­ных областях современной науки и техники. Они являют­ся неотъемлемой составной частью цифровых измери­тельных приборов, систем преобразования и отображе­ния информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиоло­кационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода—вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функ­ций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д. Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несом­ненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию про­никновения метода дискретно-непрерывного преобразо­вания в сферу науки и техники. Одним из стимулов раз­вития цифро-аналоговых и аналого-цифровых преобразо­вателей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характе­ристиками. В настоящее время применяют три вида тех­нологии производства АЦП: модульную, гибрид­ную и полупроводниковую. При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в мо­дульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобра­зователи с достаточно большой рассеиваемой мощно­стью.

В данной главе рассматриваются основные структу­ры, характеристики и методы контроля интегральных микросхем АЦП.

1 Основные структуры ИМС АЦП

Рис. 1. Обобщенная структурная схема АЦП



Обобщенная структурная схема АЦП (рис.1) представляет собой дискретизирующее устройство ДУ, тактирующее работу кванту­ющего КвУ и кодирующего КдУ устройств. На вход квантующего устройства по­ступает преобразуемый сиг­нал x(t), а с выхода кодиру­ющего устройства снимается дискретный сигнал ДС, кото­рый для АЦП в интеграль­ном исполнении обыччно име­ет форму двоичного параллельного кода. В результате равномерного квантования мгновенное значение xi не­прерывной величины x(t) представляется в виде конеч­ного числа п ступеней квантования Δх:

Xi=nΔx=x ±Δk,

где Δk - погрешность квантования, обусловленная тем, что преобразуемая величина х может содержать нецелое число п ступеней квантования Δх.

Максимально возможная погрешность квантования (погрешность дискретности) определяется ступенью квантования, т. е.

Δkmax= Δx

Для известного диапазона xmax максимально возмож­ное число дискретных значений преобразуемого сигнала х (включая х==0)

nmax=(xmax/ Δx+1)

При этом, как правило, погрешность квантования не должна превышать общую погрешность преобразования.

Следовательно, если известно значение допустимой отно­сительной погрешности преобразования γmaх, то при опре­делении ступени квантования необходимо учитывать со­отношение

Δx ≤ (γmaх /100)*xmax

Кроме того, следует учитывать, что АЦП обладают определенным порогом чувствительности Хп.ч, т. е. спо­собностью вызывать изменение выходной информации преобразователя при воздействии на его вход наимень­шего значения преобразуемого сигнала. Поэтому значе­ние Δx должно превышать Хп.ч и удовлетворять неравен­ству

Хп.ч < Δx ≤ (γmaх /100)*xmax

Реализацию обобщенной структуры можно осущест­вить различными способами, которые рассмотрены ниже. Независимо от способа построения АЦП всем им прису­ща методическая погрешность, обусловленная погрешно­стью квантования Δx.

В зависимости от области применения АЦП их основ­ные характеристики (точность, разрешающая способ­ность, быстродействие) могут существенно отличаться. При использовании АЦП в измерительных устройствах главную роль играет точность преобразования, а быстро­действие этих устройств ограничено реальной скоростью регистрации результата измерения. При использовании АЦП в качестве устройства ввода измерительной инфор­мации в ЭВМ от него требуется быстродействие в боль­шей степени.

Широкое применение АЦП в различных областях на­уки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существую­щих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:

1) метод прямого (параллельного) преобразования;

2) метод последовательного приближения (поразряд­ного уравновешивания);

3) метод интегрирования.

Каждый из этих методов позволяет добиться наилуч­ших параметров (быстродействия, разрешающей способ­ности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстре­мальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечис­ленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.

В АЦП с параллельным преобразованием входной сигнал прикладывается одновременно ко входам всех компараторов. В каждом компараторе он сравнивается с опорным сигналом, значение которого эквивалентно определенной кодовой комбинации. Опорный сигнал сни­мается с узлов резистивного делителя, питаемого от ис­точника опорного напряжения. Число возможных кодо­вых комбинаций (а следовательно, число компараторов) равно 2m1, где т—число разрядов АЦП. АЦП прямо­го преобразования обладают самым высоким быстродей­ствием среди других типов АЦП, определяемым быстро­действием компараторов и задержками в логическом де­шифраторе. Недостатком их является необходимость в большом количестве компараторов. Так, для 8-разрядно­го АЦП требуется 255 компараторов. Это затрудняет реализацию многоразрядных (свыше 6—8-го разрядов) АЦП в интегральном исполнении. Кроме того, точность преобразования ограничивается точностью и стабильно­стью каждого компаратора и резистивного делителя. Тем не менее на основе данного принципа строят наиболее быстродействующие АЦП со временем преобразования в пределах десятков и даже единиц наносекунд, но огра­ниченной разрядности (не более шести разрядов).

АЦП последовательного приближения имеет несколь­ко меньшее быстродействие, но существенно большую разрядность (разрешающую способность). В нем исполь­зуется только один компаратор, максимальное число срабатываний которого за один цикл измерения не превы­шает числа разрядов преобразователя. Суть такого ме­тода преобразования заключается в последовательном сравнении входного преобразуемого напряжения Us с выходным напряжением образцового ЦАП, изменяю­щимся по закону последовательного приближения до момента наступления их равенства (с погрешностью дискретности). Входной сигнал Ux с помощью аналогового компаратора КН сравни­вается с выходным сигналом образцового ЦАП, который управляется в свою очередь регистром последовательно­го приближения РгПП. При запуске схемы РгПП уста­навливается генератором Г в исходное состояние. При этом на выходе ЦАП формируется напряжение, соответ­ствующее половине диапазона преобразования, что обес­печивается включением его старшего разряда 100 ... 0. Если Us меньше выходного напряжения ЦАП, то стар­ший разряд выключается, включается второй по стар­шинству разряд (на входе ЦАП код 0100...0), что соот­ветствует 'формированию на выходе ЦАП напряжения, равного половине предыду­щего. В случае если Их пре­вышает это напряжение, то дополнительно включается третий разряд (на входе ЦАП код 0110...0), что при­водит к увеличению выходного напряжения ЦАП в 1,5 раза. При этом выходное напряжение ЦАП вновь сравни­вается с напряжением Ux и т. д. Описанная процедура повторяется т раз (где mчисло разрядов АЦП). В итоге на выходе ЦАП формируется напряжение, отли­чающееся от входного преобразуемого напряжения Ux не более чем на единицу младшего разряда ЦАП. Результат преобразования напряжения Ux в его цифровой эквива­лент—параллельный двоичный код Nx—снимается с выхода РгПП. Очевидно, погрешность преобразования и быстродействие такого устройства определяются в основ­ном параметрами ЦАП (разрешающей способностью, ли­нейностью, быстродействием) и компаратора (порогом чувствительности, быстродействием). Преимуществом рассмотренной схемы является возможность построения многоразрядных (до 12 разрядов и выше) преобразова­телей сравнительно высокого быстродействия (время 'пре­образования 'порядка нескольких сот наносекунд). На ос­нове метода последовательного приближения реализова­на и серийно выпускается ИМС 12-разрядного АЦП К572ПВ1 с временем преобразования 100 мкс.

Наиболее простыми по структуре среди интегрирую­щих преобразователей являются АЦП с преобразовани­ем напряжения в частоту, построенные на базе интегри­рующего усилителя и аналогового компаратора. Погреш­ность их преобразования определяется нестабильностью порога срабатывания компаратора и постоянной времени интегратора. Более высокими метрологическими харак­теристиками обладают АЦП, реализованные по принци­пу двойного интегрирования (например, ИМС, 11-раз­рядного АЦП К572ПВ2), поскольку при этом практиче­ски удается исключить влияние на погрешность преобра­зования нестабильности порога срабатывания компара­тора и постоянной времени интегратора.

Анализ описанных методов преобразования и струк­турных схем АЦП позволяет сделать вывод, что наи­большим быстродействием обладают АЦП прямого пре­образования, однако их разрядность невысока. АЦП поразрядного уравновешивания, обладая средним быст­родействием, дают возможность получить достаточно высокую разрешающую способность. Но помехозащи­щенность тех и других преобразователей невысока. АЦП интегрирующего типа, обладая наименьшим быстродей­ствием, обеспечивают наибольшую помехозащищенность и точность преобразования.

2. Характеристики ИМС АЦП

Основными параметрами, характеризующими ИМС АЦП, являются разрешающая способность, нели­нейность, коэффициент преобразования, погрешность полной шкалы, смещение нуля, абсолютная погрешность, дифференциальная нелинейность, монотонность, время преобразования.

Разрешающая способность определяется числом дис­кретных значений выходного сигнала преобразователя, составляющих его предел преобразования. Чем больше число дискретных значений, тем выше разрешающая способность преобразователя. Двоичный m-разрядный преобразователь имеет 2m дискретных значений, а его разрешающая способность равна 1/2m. В преобразовате­лях различают наименьший и наибольший значащие раз­ряды. В двоичной системе кодирования наименьший зна­чащий разряд — это разряд, имеющий наименьший вес. Вес младшего разряда определяет разрешающую способ­ность. Наибольший значащий разряд соответствует наибольшему весу. В двоичной системе кодирования наи­больший значащий разряд имеет вес 1/2 номинального значения максимально возможного выходного сигнала при всех включенных разрядах (полной шкалы преобра­зования).

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее