110083 (Технология изготовления распределительного вала), страница 2

2016-08-01СтудИзба

Описание файла

Документ из архива "Технология изготовления распределительного вала", который расположен в категории "". Всё это находится в предмете "остальные рефераты" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "остальные рефераты" в общих файлах.

Онлайн просмотр документа "110083"

Текст 2 страницы из документа "110083"

Назначение нормализации различно в зависимости от состава стали. Для низкоуглеродистых сталей нормализацию применяют вместо отжига. При повышении твердости нормализация обеспечивает большую производительность при обработке резанием и получении более высокой чистой поверхности. Для отливок из среднеуглеродистой стали нормализацию или нормализацию с высоким отпуском применяют вместо закалки и высокого отпуска. Механические свойства будут при этом несколько ниже, но изделия подвергнутся меньшей деформации по сравнению с получаемой при закалке и вероятность появления трещин практически исключается.

Нормализацию с последующим высоким отпуском (600-650 С) часто используют для исправления структуры легированных сталей вместо полного отжига, так как производительность и трудоемкость этих двух операций выше, чем одного отжига.

Для конкретной детали (распределительного вала) нормализация проходит при температуре 880 С с последующим охлаждением на воздухе.

Закалка

Закалка – это термическая обработка, заключается в нагреве стали до температуры выше критической или температуры растворения избыточных фаз, выдержке и последующем охлаждении со скоростью, превышающей критическую. Закалка не является окончательной операцией термической обработки. Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства сталь после закалки обязательно подвергают отпуску.

Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости, износостойкости и прочности, а конструкционную сталь – для повышения прочности, твердости, повышения достаточно высокой пластичности и вязкости, а для ряда сталей и высокой износостойкости.

Доэвтектоидной стали нагревают до температуры на 30-50 С выше точки Ас3. В этом случае сталь с исходной структурой перлит-феррит при нагреве приобретает аустенитную структуру, которая при последующем охлаждении со скоростью выше критической превращается в мартенсит. Закалку от температур соответствующих межкритическому интервалу (Ас1-Ас3), не применяются.

Заэвтектоидные стали под закалку нагревают несколько выше Ас1. При таком нагреве образуется аустенит при сохранении некоторого количества вторичного цементита. После охлаждения структура стали состоит из мартенсита и нерастворимых частиц карбидов, обладающих высокой твердостью. Интервал колебания температур закалки большинства сталей невелик (15-20 С).

Для многих сталей температура нагрева под закалку значительно превышает критические точки Ас1 и Ас3 (150-200 С), что необходимо для перевода в твердый раствор специальных карбидов и получения требуемой легированности аустенита.

Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения изделия и не должно вызвать закалочных дефектов: трещин, деформаций, короблений и высоких растягивающих остаточных напряжений в поверхностных слоях. Обычно для закалки используют неклеящие жидкости – воду, водные растворы солей и щелочей, масла.

Существуют различные способы закалки: непрерывной, прерывистой, ступенчатой, закалка с самоотпуском, изотермическая и светлая закалка.

Закаливаемость и прокаливаемость стали

Закаливаемость – это способность стали повышать твердость в результате закалки. Закаливаемость стали определяется содержанием в стали углерода. Чем выше в мартенсите углерода, тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость.

Прокаливаемость – это способность стали получать закаленный слой в мартенситной или тросто-мартенситной структурой и высокой твердостью на ту или иную глубину. Прокаливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если действительная скорость охлаждения в сердцевине изделия будет превышать критическую скорость закали, то сталь получит мартенситную структуру по всему сечению и тем самым будет иметь сквозную прокаливаемость. Если действительная скорость охлаждения в сердцевине будет меньше Vкрю, то изделие прокалится на некоторую глубину и прокаливаемость будет неполной. За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситной зоны. Диаметр заготовки, в центре которой после закалки в данной охлождающей среде образуется полумартенситная структура, называют критическим диаметром.

Отпуск

Отпуск заключается в нагреве закаленной стали до температуры ниже Ас1, выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которой сталь получает требуемые механические свойства. Кроме того, отпуск полностью или частично устраняет внутренние напряжения, возникающие при закалке. Эти напряжения снимаются тем полнее, чем выше температура отпуска.

Скорость охлаждения после отпуска также оказывает большое влияние на величину остаточных напряжений. Чем медленнее охлаждение, тем меньше остаточное напряжение. Быстрое охлаждение от 600 С создает новые тепловые напряжения. По этой причине изделия сложной формы воизбежание их коробления после отпуска при высоких температурах следует охлаждать медленно, а изделия из легированных сталей, склонных к обратимой отпускной хрупкости после отпуска при 500-600 С во всех случаях следует охлаждать быстро.

Различают низкотемпературный, среднетемпературный и высокотемпературный отпуск.

Низкий отпуск проводят с нагревом до 150-200 С, реже до 240-250 С. при этом снижаются внутренние напряжения, мартенсит закалки проводится в отпущенный мартенсит, повышается прочность и немного улучшается вязкость без заметного снижения твердости. Закаленная сталь (0.5-1.3% С) после низкого отпуска сохраняет твердость в пределах HRC 58-63, а следовательно, высокую износостойкость. Однако такое изделие не выдерживает значительных динамических нагрузок.

Низкотемпературному отпуску подвергают поэтому режущий и измерительный инструмент из углеродистых и низколегированных сталей, а также датели, претерпевшие поверхностную закалку, цементацию, цианирование или нитроцементацию. Продолжительность отпуска обычно 1-2.5 часа, а для больших сечений и измерительных инструментов назначают более длительный отпуск.

Среднетемпературный отпуск выполняют при 350-500 С и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечивает высокий предел упругости, предел выносливости и реакционную стойкость. Структура стали (0.45-0.8% С) после среднего отпуска - троостит отпуска или троостомартенсит с твердостью HRC 40-50. Температуру отпуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной зрупкости. Охлаждение после отпуска при 400-500 С следует проводить в воде, что способствует образованию на поверхности сжимающих остаточных напряжений, которые увеличивают предел выносливости пружин.

Высокотемпературный отпуск. Его проводят при 500-680 С. структура стали при высокого отпуска – сорбит отпуска.высокий отпуск создает наилучшее соотношение прочности и вязкости стали. Его проводят с целью:

  1. Снижение внутреннего напряжения;

  2. Снижение твердости для обдирки слитка.

Закалка с высоким отпуском по сравнению с нормализованным или отожженным состоянием одновременно повышает пределя прочности и текучемти, относительное сужение и особенно ударную вязкость. Термическую обработку, состоящую из закалки и высокого отпуска, называют улучшением. Отпуск при 550-600 С в течение 1-2 часов почти полностью снимает остаточное напряжение, возникшее при закалке. Чаще длительность высокого отпуска составляет 1-6 часов в зависимости от габаритных размеров изделий.

Для конкретной детали (распределительный вал) режимы термической обработки состоят из:

Предварительной термической обработки слитка, которая состоит из высокого отпуска, после чего производится нормализация.

Далее проводится правка детали, которая устраняет различные искажения размеров. Далее проводят цементацию, которая заключается в процессе насыщения поверхностного слоя стали углеродом. Цементация и последующая термическая обработка одновременно повышают предел выносливости. Поэтому после цементации проводится окончательная термическая обработка, которая заключается в высоком отпуске, закалке и низком отпуске.

4. Поверхностное упрочнение

Газовая цементация. Этот процесс осуществляют нагревом изделия в среде газов, содержащих углерод. Газовая цементация имеет ряд преимуществ по сравнению с цементацией в твердом карбюрезаторе, поэтому ее широко применяют на заводах, изготавливающих детали массовыми партиями.

В случае газовой цеменации можно получить заданную концентрацию углерода в слое; сокращается длительность процесса, так как отпадает необходимость нагрева ящиков, наполненных малотеплопроводным карбюрезатором; обеспечивается возможность полной механизации и автоматизации процесса и значительно упрощается последующая термическая обработка изделий так как можно производить закалку непосредственно из цементационной печи.

Наиболее качественный цементованный слой получается при использовании в качестве карбюризатора природного газа, состоящего почти полностью из метана и пропано-бутановых смесей, подвергнутых специальной обработке, а также жидких углеродов. Основной реакцией, обеспечивающей науглероживание при газовой цементации является диссоциация окиси углерода и метана. Процесс ведут при 910-930 С, 6-12 часов (толщина слоя 1-1.7 мм).

В серийном производстве газовую цементацию обычно проводят в шахтных муфельных печах серии Ц. Шахтные печи серии Ц имеют рабочую температуру 950 С, единовременную загрузку 185-1100 кг, диаметр рабочего пространства 300-600 мм и высоту 600-1200мм. Изделия в печь загружают на специальных подвесках и приспособлениях, которые помещают в реторте. Необходимая для газовой цементации атмосфера создается при подаче в камеру печи жидкостей, богатых углеродом. Углеводородные соединения при высокой температуре разлагаются с образованием активного углерода и водорода.

На предприятиях с серийным масштабом производства также применяют полярные универсальные печи с герметизированной форкамерой и закалочным баком. В таких печах исключается контакт нагретых деталей с воздухом, предотвращается образование дефектов на поверхности изделий, снижающих прочность.

В крупносерийном и массовом производстве газовую цементацию проводят в безмуфельных печах непрерывного действия.

В этих установках весь цикл химико-термической обработки (цементация, закалка и низкий отпуск) механизирован и автоматизирован; производительность установок достигает 500-600 кг/ч и более. В печах непрерывного действия и камерных печах для цементации применяют эндотермическую атмосферу, в которую добавляют природный газ (92-95% эндогаза и 3-5% природного газа). Эндотермическая атмосфера получается частичным сжиганием природного газа или другого углеводорода в специальном эндотермическом генераторе при 1000-1200 С в присутствии катализатора. При небольшом содержании в эндотермической атмосфере СН4 (до 5,0%) он не участвует непосредственно в процессе насыщения углеродом, а увеличивает содержание в атмосфере СО.

В этих условиях на поверхности стали практически не выделяется сажа и сохраняется однозначная зависимость между углеродным потенциалом и содержанием Н2О и СО2 в атмосфере.

Для сокращения длительности процесса в промышленности широко используют газовую цементацию, при которой углеродный потенциал эндотермической атмосферы в начале поддерживают высоким, обеспечивающим получение в поверхностной зоне стали 1,2-1,3% С, а затем его углеродный потенциал снижают до 0,8%.

В печах непрерывного действия предусмотрены две зоны по длине печи. В первую зону, примерно соответствующую 2/3 длины печи, подают газ, состоящий из смеси природного и эндотермического газов. Во вторую зону подают только эндотермический газ, находящийся в равновесии с заданной концентрацией углерода на поверхности, обычно 0,8% С. при использовании этого метода цементации следует иметь в виду, что снижение содержания углерода в слое от 1,2-1,3% до 0,8% происходит только за счет углерода, растворенного в аустените. В случае легированной стали снижение в аустените концентрации углерода и легирующих элементов приводит к уменьшению закаливаемости и прокаливаемости цементованного слоя и в итоге к ухудшению механических свойств обрабатываемого изделия. В процессе газовой цементации в сталь может диффундировать находящийся в атмосфере кислород. Это приводит к окислению поверхностного слоя стали, обладающих большим химическим средством к кислороду по сравнению с железом. Окисление легирующих элементов («внутреннее окисление») снижает устойчивость аустенита, и при последующей закалке в цементованном слое трооститная сетка и окислы, что понижает его твердость и предел выносливости стали. Добавки и цементирующей атмосфере (в конце процесса) аммиака уменьшает вредное влияние внутреннего окисления. Скорость газовой цементации при температуре 930-950 С составляет 0,12-0,15 мм/ч при толщине слоя до 1,5-1,7 мм.

  1. Разработка технологии изготовления детали

В мартеновских печах производят жидкий металл с разливой в слитке. Слиток подвергают предварительной термической обработке, которая состоит из высокого отпуска. Проходит снижение внутреннего напряжения, снижение твердости для обдирки слитка. Дялее производим прокатку и штамповку слитка методом горячей деформации при температуре от 1760 до750 С с последующим охлаждением. После этого следует термическая обработка заготовки – нормализация при температуре 880 С с последующим охлаждением на воздухе. При нормализации происходит перекристаллизация стали, устраняющая крупнозернистую структуру. Далее следует очистка от окалины. Затем проводим правку деталм, после чего следует механическая обработка заготовки, во время которой изготовляют демаль и далее подвергают ее цементации. Процесс ведут при 910-930 С 6-12 часов. Окончательные свойства цементованных изделий достигаются в результате термической обработки, выполняемой после цементации.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее