64010 (Проектирование и технология радиоэлектронных средств)

2016-08-01СтудИзба

Описание файла

Документ из архива "Проектирование и технология радиоэлектронных средств", который расположен в категории "". Всё это находится в предмете "коммуникации и связь" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "коммуникации и связь" в общих файлах.

Онлайн просмотр документа "64010"

Текст из документа "64010"

Федеральное агентство по образованию Российской Федерации

Новгородский государственный университет им. Ярослава Мудрого

Институт Электронных и Информационных систем

Кафедра «Проектирование и технология радиоаппаратуры»

Реферат по учебной дисциплине

«Физические основы функциональной электроники»

по теме: «Проектирование и технология радиоэлектронных средств»

2010

Содержание

Введение

1. Микроактюаторы

2. Законы пропорциональной миниатюризации

3. Критерии оценки микроактюаторов

4. Трение и износ

5. Различные типы микроактюаторов

6. Электростатические актюаторы

7. Магнитные актюаторы

8. Пьезоэлектрические актюаторы

9. Гидравлические актюаторы

10. Тепловые актюаторы

11. Изготовление МЭМС

12. Материалы для МЭМС

13. Технологии производства МЭМС

14. Применение МЭМС

Заключение

Список литературы

Введение

МикроЭлектроМеханические Системы или сокращенно МЭМС - это множество микроустройств самых разнообразных конструкций и назначения, производимых сходными методами с использованием модифицированных групповых технологических приемов микроэлектроники. Объединяет их два признака. Первый – это размер, второй – наличие движущихся частей и предназначение к механическим действиям. В мире они известны под аббревиатурой MEMS – MicroElectroMechanical Systems.

Это могут быть:

  • миниатюрные детали: гидравлические и пневмо клапаны, струйные сопла принтера, пружины для подвески головки винчестера;

  • микроинструменты: скальпели и пинцеты для работы с объектами микронных размеров;

  • микромашины: моторы, насосы, турбины величиной с горошину;

  • микророботы;

  • микродатчики и исполнительные устройства.

Некоторые из них уже производятся в мире многомиллионными тиражами, другие только разрабатываются и проходят испытания. С микроситемами связывают тот технологический рывок, который человечество совершит в 21 веке, им предрекают совершить такой же переворот, который совершила в 20 веке микроэлектроника.

Микротехнологии развиваются на основе научно-технологического задела микроэлектроники. Вместе с тем, микроэлектромеханические системы призваны активно взаимодействовать с окружающей средой. Кроме того, конструкции систем обладают выраженной трехмерностью. От классических механических систем их отличает размер – материалы в таком масштабе ведут себя несколько иначе, чем в объемном виде, хотя микросистемы еще подчиняются законам классической физики, в отличие от наносистем. Тем не менее классическая физика предсказывает для микроустройств особенные свойства. Все это требует ряда совершенно новых подходов к проектированию, изготовлению и материалам МЭМС. Новые задачи в проектировании связаны с необходимостью расчета и моделирования не только задач схемотехники и логики, но и совокупности проблем механики твердого тела, термоупругости, газо- и гидродинамики - порознь или одновременно появляющихся в изделии. Что касается материалов, то несмотря на то, что монокристаллический кремний - традиционный материал микроэлектроники - имеет ряд уникальных свойств, необходимы другие материалы с новыми сочетаниями электро-физико-механических свойств. Новые задачи технологии связаны с наиболее характерными отличиями микросистем от изделий микроэлектроники: если последние по существу двумерны и механически статичны, то микросистемы - это реальные трехмерные структуры, элементы которых должны иметь возможность относительного механического перемещения. Эти новые свойства требуют развития новых технологических операций для 3-D формообразования.

Поскольку МЭМС развиваются на стыке множества отраслей науки и техники, требуется участие в работах специалистов самых разных областей знания, которые могли бы эффективно взаимодействовать. Координировать работу таких групп должны специалисты, которые владеют знаниями во всех основных предметных областях, имеющих отношение к созданию микросистем, а также владеют современной методикой реализации инновационной деятельности.


1. Микроактюаторы

Микроактюатор (составная часть МЭМС) - это устройство, которое преобразовывает энергию в управляемое движение. Микроактюаторы имеют размеры от нескольких квадратных микрометров до одного квадратного сантиметра. Диапазон применения микроактюаторов чрезвычайно широк и различен, и он постоянно возрастает. Они используются в робототехнике, в управляющих устройствах, в космической области, в биомедицине, дозиметрии, в измерительных приборах, в технологии развлечения, автомобилестроении и в домашнем хозяйстве.

Основные используемые методы получения активации (движение, деформация, приведение в действие) в таких устройствах могут быть сведены к следующим: электростатический, магнитный, пьезоэлектрический, гидравлический и тепловой. Наиболее перспективными методами считаются пьезоэлектрический и гидравлический, хотя и другие имеют важное значение. Электростатическая активация применяется примерно в одной трети актюаторов, и, вероятно, это наиболее общий и хорошо разработанный метод, его главные недостатки это износ и слипание. Магнитные актюаторы обычно требуют относительно большой электрический ток (т.е. много энергии), также на микроскопическом уровне при использовании электростатических методов активации, получаемый выходной сигнал на относительную единицу размерности лучше, чем при использовании магнитных методов, т.е. при одном и том же размере электростатическое устройство выдаёт более хороший выходной сигнал. Тепловые актюаторы тоже потребляют относительно большое количество электрической энергии, и главный их недостаток в том, что генерируемое тепло рассеивается. В настоящее время разрабатываются микроактюаторы, основанные на эффекте памяти формы, которые могут быть минитюаризированы до субмикронных размеров.

При изготовлении и эксплуатации МЭМС встречается масса особенностей и проблем, обуславливаемых малыми размерами – например проблема сухого трения, или опасность поломки из-за сил поверхностного натяжения. Поэтому проектирование микросистем черезвычайно важный процесс. Существует довольно много специальных программных средств, которые позволяют моделировать МЭМС устройства.


2. Законы пропорциональной миниатюризации

При изучении микросистем последствия пропорционального уменьшения размеров представляют особый интерес. То есть принимается, что все размеры и углы остаются в фиксированном соотношении друг с другом, а изменяется только масштаб длины, например, предположим изометрический масштаб. Механические процессы описываются соответствующими характеристическими числами, которые должны остаться постоянными, для того чтобы процессы остались такими же. Некоторые характеристические числа зависят от размера системы, а другие независимы от него. Здесь представлены только некоторые характеристические числа, которые особенно интересны для применения в микросистемах.

Число Коши (упругие колебания)

Число Коши [Формула 1 (Рис. 1)] определяет соотношение инерционных сил и сил упругости в твёрдом теле, оно характеризует движение или вибрацию.

Число Коши зависит только от квадрата длины L и частоты колебаний ω, а также от свойств материала (от плотности - ρ и модуля Юнга - Е).

При упругой вибрации, это, следовательно, подразумевает, что масштаб частоты колебаний обратно пропорционален длине.

Из этого следует, что механические микросистемы обладают очень высокими собственными частотами.

Хотя собственные частоты ограничивают рабочий диапазон, миниатюризированные системы проявляют значительно улучшенные динамические характеристики и более низкое время реакции.

Рис. 1

Число Вебера (инерция, поверхностное натяжение)

Число Вебера [Формула 2 (Рис.1)] определено, как соотношение инерционных сил и поверхностного натяжения. Где u- это скорость, ρ - плотность и σs - поверхностное натяжение, для воды значение σs = 0,073 Н/м. Для больших чисел Вебера инерционные силы играют главенствующую роль, в то время как для маленьких чисел Вебера силы поверхностного натяжения значительны. Число Вебера имеет значение при формировании волн на свободных поверхностях, для потоков жидкости в капиллярах и каналах, а также в формировании капелек. Число Вебера связывает силу поверхностного натяжения с объёмными силами. При небольших размерах силы, связанные с поверхностью, доминируют.

Число Фурье (переходный процесс при переносе тепла)

Число Фурье [Формула 3 (Рис.1)] указывает на соотношение между накопленной энергией и проведённой тепловой энергией. Оно определяет степень проникновения и распространения тепла в случае переходного процесса при переносе тепла через коэффициент теплопроводности λ, удельную теплоемкость cp и плотность ρ. Число Фурье обратно пропорционально квадрату длины L и прямо пропорционально времени. Для F0<1 тело имеет однородную температуру и переходной эффект не имеет значения. В микросистемах, тепловые актюаторы достаточно быстры для того, чтобы выполнить механическую функцию. Актюаторы макродиапазона слишком медленны из-за своей тепловой инерции.

Число Фруда (механика, конвекция, механика жидкости)

Число Фруда [Формула 4 (Рис.1)] имеет важное значение для всех динамических перемещений в гравитационном поле. Оно характеризует соотношение между инерционными силами и силами гравитации (вес) в зависимости от скорости υ, ускорения из-за силы тяжести g и масштаба длины L. При больших значениях числа Фруда эффектом силы тяжести пренебрегают, в то время как при малых значениях числа Фруда можно пренебрегать силами инерции. Так как число Фруда обратно пропорционально величине длины, эффект гравитации уменьшается при уменьшении размеров. Действительно маленькие животные и микроорганизмы используют более высокую частоту шага, чем люди или большие животные.


3. Критерии оценки микроактюаторов

Для оценки качества микроактюаторов используются следующие показатели:

  • Линейность определяет линейность выходного сигнала как функцию входного. Определяется как максимальная разница между опорной линейной линией и выходом актюатора.·Выражена как процент полного выхода.

  • Точность - насколько точно и воспроизводимо выполнена искомая активация.

  • Погрешность определяет разность между реальным перемещением и целевым.

  • Для разрешения имеется три определения:

  1. Наименьший обеспечиваемый шаг.

  2. Наименьшее приращение входа, приводящее к обнаружению активации.

  3. Наименьший определяемый шаг.

  • Воспроизводимость - отклонение выходного сигнала по циклам работы

  • Гистерезис - это разница между выходным сигналом актюатора Y, когда Y получают в двух противоположных направлениях.

  • Пороговое значение - начиная с нулевого входного сигнала, наименьшее начальное приращение входа, которое приводит к обнаружению выходного сигнала актюатора.

  • Холостой ход – “мертвый” ход после смены направления ("b").

  • Шум - флуктуации (случайные изменения) в выходном сигнале с нулевым входом.

  • Дрейф - изменение выходного сигнала актюатора (с постоянным входом) в зависимости от изменения времени, температуры и т.д.

  • Амплитуда - полный рабочий диапазон выходного сигнала актюатора.

  • Чувствительность - отношение изменения выходного сигнала актюатора ΔY к изменению приращения входного сигнала ΔX.

  • Скорость - скорость, с которой изменяется выходной сигнал актюатора.

  • Переходная характеристика - резкое изменение выходного сигнала актюатора в ответ на ступенчатый входной сигнал.

  • Ранжирование - оценка для сопоставления разных методов активации: DS= -(dη/dV), где η - выход по энергии, V - объём.


4. Трение и износ

Правила пропорциональной миниатюризации приводят к факту, что на микроуровне поверхностные силы по сравнению с объёмными имеют большее значение. Из этого следует, что для микроактюаторов трение имеет очень большое значение. Кроме того, из-за своей маленькой массы микромеханические элементы обладают малой силой инерции, что ведёт к высоким динамическим характеристикам, и следовательно они часто работают с высокой рабочей частотой и скоростью.

С одной стороны трение ведёт к потерям, которое является причиной ухудшения функционирования элементов, с другой стороны трение приводит к износу, который негативно воздействует на функциональное поведение и ведёт к ускоренному старению и, в конечном счёте, поломке компонента. Трение является ключевым фактором, который определяет не только эффективность, но и долговечность. Однако трение не всегда сопровождается износом, возможно трение и без износа.

Трение - это явление, воздействующее на поверхностный слой материала, и практически не затрагивающее объёмные характеристики. Это результат взаимодействия контактных областей поверхностей. Важные факторы, влияющие на величину трения: состояние поверхности, поверхностная топология и взаимодействующие материалы. По сравнению с традиционным машиностроением в микросистемах появляется трение твердых тел (сухое трение). Для микромоторов сила поверхностного натяжения настолько велика, что существенно влияет на их функционирование. Поэтому в качестве подшипников скольжения используют подшипники сухого трения, которые, однако, могут быть снабжены молекулярными смазочными плёнками для уменьшения трения и износа. В этом случае характеристики смазки и контактной поверхности становятся главными факторами. Характеристики материалов для смазочных плёнок молекулярной толщины изменяются. Следует заметить, что на сегодняшний день ещё не существует общепринятых методов применения молекулярных плёнок толщиной в несколько нанометров. В этом случае шероховатость поверхности имеет более высокую важность, чем толщина используемой в микросистемах плёнки, которая лежит в пределах от нескольких десятков до нескольких сотен нанометров.

Классическая инженерная модель макроскопического трения имеет следующие существенные характеристики:

  1. Сила трения зависит только от нормальной силы FN и всегда действует в направлении противоположном направлению движения.

  2. Сила трения не зависит от величины поверхности соприкосновения.

  3. Сила трения не зависит от скорости скольжения.

  4. Сила трения покоя всегда больше силы трения движения.

  5. Силы трения зависят только от двух материалов, которые скользят друг по другу.

Следующая формула, названая законом Кулона – Амонтона, выражает эти соотношения: F1=μFN, где F1и FN - это тангенциальная и нормальная составляющая силы и μ - кинетический коэффициент трения. Некоторые коэффициенты сухого трения скольжения μ для различных комбинаций материалов представлены в таблице.

материал

μ

материал

μ

алюминий/алюминий

1,0-1,4

тефлон/сталь

0,04

никель/никель

0,53-0,8

Al2O3/Al2O3

0,4

сталь/сталь

0,42-0,57

кремний/Al2O3

0,18

алмаз/алмаз

0,1-0,15

сталь/сапфир

0,15

медь/медь

1,2-1,5

никель/вольфрам

0,3

Любая поверхность имеет неровности и поверхностную волнистость, что приводит к тому, что фактическая область контакта состоит из отдельных контактных точек. Точки контакта или неровности составляют только малую долю общей площади поверхности, зависящую от нагрузки.

Так как исключительно точки контакта вносят вклад в генерацию силы, напряжение в точках контакта соответственно высоко, и предел текучести материала σm может быть достигнут при относительно малых силах. В пределах контактных точек происходят эластичные и пластические деформации, посредством чего общая суммарная площадь контакта А становится прямо пропорциональной давлению и обратно пропорциональной пределу текучести, A=p/σm. В контактных областях силы междуатомного взаимодействия действуют между смежными участками вещества, которые противостоят касательному напряжению σs. В этом случае силы трения переносятся только в область контакта. Таким образом, сила трения становится пропорциональной фактической площади контакта, и коэффициент трения находится по формуле μ=σsm. Эта модель даёт возможность объяснить трение Кулона, так как трение становится пропорциональным нагрузке, и не зависит от кажущейся площади. Сумма точек области находящихся в реальном контакте возрастает с увеличением нагрузки, из-за вовлечения большей области в адгезионное взаимодействие деформацией. Модель также объясняет, почему различные поверхности материалов имеют различный коэффициент трения - атомные поверхности имеют разные межмолекулярные связи. Некоторые применения этой идеи могут подтвердить вывод о том, что грубые поверхности могут иметь меньшее трение, чем очень хорошо отполированные, поскольку большая часть поверхности находится в контакте. Главная роль смазки - держать поверхности раздельно.

Износ, который сопровождает трение, отчасти можно представить в виде следующей картины. Внутри точек контакта происходит сильная нагрузка на материал, которая приводит к пластическим деформациям с одной стороны и с другой стороны, из-за слипания точек контакта, к формированию трещин на поверхности контактирующего материала и в результате к необратимым изменениям. Для износа характерны следующие механизмы:

  • Адгезия (слипание)

  • Абразивный износ (стирание)

  • Эрозия из-за разрыва оксидных покрытий

  • Усталость.

Вследствие адгезии может осуществляться перенос вещества между точками контакта и происходить искажение кристаллической решетки. Силы адгезии увеличиваются для веществ, которые имеют большее взаимное адгезивное сходство или химическую растворимость, создавая больший износ при контакте похожих поверхностей, чем при разнородных. Идеальным для предотвращения трения является материал, который сопротивляется образованию химических связей со множеством других материалов. Эта химическая инертность найдена в некоторых материалах, таких как тефлон. На атомном уровне было определено, что сухое трение иногда меньше, чем жидкое, потому что жидкость предоставляет больший фактический контакт между поверхностью и жидкостью, что приводит к гораздо большему адгезионному трению. Текстурирование может быть прежде всего использовано для уменьшения стикции (слипания) и трения покоя, так как более нерегулярные поверхности имеют меньшую стикцию. Текстурирование также может оказывать некоторую помощь смазочному материалу.


5. Различные типы микроактюаторов


Преобразование энергии

Цель микроактивации - это получение силы, которая могла бы производить механическое перемещение. Следовательно, разные принципы получения активации могут быть оценены согласно их работоспособности, т.е. возможности использования механической энергии. По сравнению с электромагнитным преобразованием энергии, которое преобладает в традиционной инженерии двигательных механизмов, в микроактивации можно использовать множество разнообразных принципов, которые не имело смысла использовать по функциональным или по ценовым характеристикам в макротехнологии.

Начнём с фундаментального отношения: изменение накопленной энергии системы W является причиной появления силы F:

[Формула 5 (Рис.1)]

Если запас энергии изменяется между двумя состояниями W1 и W2, мы получаем:

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее