148187 (Анализ конструкции и методика расчета автомобиля ВАЗ-2108), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Анализ конструкции и методика расчета автомобиля ВАЗ-2108", который расположен в категории "". Всё это находится в предмете "транспорт" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "транспорт" в общих файлах.

Онлайн просмотр документа "148187"

Текст 3 страницы из документа "148187"

L'C = LC/FC,

где Fc — площадь конуса синхронизатора. По расчетным данным, удельная работа трения (в МДж/см2) синхронизатора автомобилей находится в следующих пределах.

Работа трения синхронизатора сопровождается выделением теплоты. За одно включение температура синхронизатора повышается

ΔT = γcLc/(mcc),

где γc — коэффициент перераспределения теплоты между деталями (для синхронизаторов γc = 0,5); тс — масса синхронизатора; с — коэффициент теплоемкости

За одно выключение синхронизатор может нагреваться на 15...30°С.

Блокировка осуществляется блокирующими устройствами синхронизаторов, препятствующими включению передачи до полного выравнивания угловых скоростей соединяемых элементов.

Рисунок 7. Схемы блокирующих устройств синхронизаторов:

а — с блокирующими зубьями; б — с блокирующими вырезами в цилиндрах; в — с блокирующими пальцами

Окружная сила, прижимающая блокирующие элементы,

Pб = Мтр / rб,

где r6 — радиус расположения блокирующих элементов

Эта сила вызывает реакцию на блокирующих поверхностях

Px = Мтр / (r6 tgβ).

Для того чтобы передача не могла быть включена до полного выравнивания угловых скоростей, сила Q, приложенная к муфте синхронизатора, должна быть меньше Рх:

Q < Px.

С увеличением силы Q растет момент Мтр, а следовательно, увеличивается сила Рх (силы трения на блокирующих поверхностях не учитываются).

Выразив силу Q через параметры синхронизатора, характеризуемые уравнением (5), получим

tgβ = μ rср / (sinδ r6).

Следует особо подчеркнуть, что резкое увеличение усилия Q (при правильно выбранных параметрах синхронизатора) не может привести к преждевременному включению передачи до полной синхронизации и обычно приводит или к ускоренному изнашиванию блокирующих деталей, или к их поломкам.

Если учесть трение на блокирующих поверхностях, то осевая реакция увеличится на величину

P'x = P'п μ'sinβ,

где μ'— коэффициент трения блокирующих поверхностей; Р'п — нормальная сила давления на блокирующих поверхностях. Чтобы не произошло преждевременного включения передачи, достаточно обеспечить неравенство Q < Px — Р'х, которое после преобразований можно записать в следующем виде:

.

В этом случае угол β несколько больше, чем рассчитанный без учета трения на блокирующих поверхностях.

Параметры синхронизаторов выбирают в следующих пределах: μ = 0,06...0,1; δ = 6...12°; β = 25...40°. В качестве материала для конусных колец используют бронзу. На трущиеся поверхности колец наносят канавки для разрушения масляной пленки и увеличения коэффициента трения.

Нагрузки в коробке передач.

Рисунок 8. Схема сил, действующих в двухвальной коробке передач

На рисунке 8 представлена простейшая схема двухвальной коробки передач при включении одной передачи и схемы сил, действующих на зубчатые колеса и валы. На зубья пары постоянного зацепления привода промежуточного вала действуют следующие силы:

- окружная: Pп.з = Mкmax/r ωп.з;

- осевая (при косозубых колесах): Pхп.з = Pп.з tgβ;

- радиальная: PRп.з = Pп.з tga αω / cosβ;

- нормальная: Pnп.з = Pп.з /(cos αω cosβ).

Здесь αω — угол профиля зуба; (β — угол наклона зубьев; r ωп.з — радиус делительной окружности шестерни ведущего вала. На зубья пары при включении j'-й передачи действуют силы:

- окружная Pi = Mкmax ui / rωi;

- осевая Pхi = P1 tgβ;

- радиальная PRi = Pi tga αω / cosβ;

- нормальная Pni = Pi /(cos αω cosβ).

Здесь ui — передаточное число включенной передачи; rωi — радиус делительной окружности зубчатого колеса ведомого

При вычислении сил, действующих на зубья дополнительной коробки (мультипликатор или демультипликатор), следует учитывать передаточные числа этих коробок.

Зубчатые колеса. Зубчатые зацепления характеризуют следующие основные соотношения: прямозубое mn = dw/z, косозубое ms=dwcosβ/z; cos β = mn / m5, где mn — нормальный модуль, мм; ms—торцовый модуль, мм; dwдиаметр делительной окружности колеса; z — число зубьев.

Ширина зубчатого колеса зависит от передаваемого момента и от расстояния между осями валов. Приближенно ширина зубчатого колеса может быть определена по формуле:

b = (5...8) mn.

При применении зубчатых колес большой ширины повышаются требования к жесткости валов. При недостаточной жесткости валов изгиб последних вызывает концентрацию напряжений на краях зубьев.

Расстояние между осями валов коробки передач

А0 = mn (z1 + z2)/(2cosβ), где z1 + z2 — сумма чисел зубьев пары, находящейся в зацеплении.

Это расстояние связано с передаваемым крутящим моментом следующей зависимостью:

,

где а=14,5...16 для легковых автомобилей и а=17,0...21,5 для грузовых автомобилей. В автомобильных коробках передач, как правило, применяются колеса с корригированными зубьями, что позволяет увеличить прочность зуба. Угол профиля зуба обычно αω = 20°. Нормальный модуль тп выбирают из гостированного размерного ряда; его значение зависит от передаваемого крутящего момента.

Мкmах, Н∙м . . 100...200 201...400

mn, мм . . . 2,25...2,5 2,6...3,75

Мкmах, Н∙м . . 401...600 601...800 800...1000

mn, мм . . . 3,76...4,25 4,26...4,5 4,6...6

Во многих коробках передач нормальный модуль зубчатых колес не одинаков на всех передачах; на низших передачах нормальный модуль имеет более высокое значение.

Угол наклона зубьев β = 25...40° для легковых автомобилей и β = 20...25° для грузовых автомобилей.

Рисунок 9. Схема сил, действующих на зубчатые колеса промежуточного вала коробки передач

Исходя из равенства осевых сил,

Рх1 = Рх2; Рх1 = P1tgβ1; Рх2 = P2tgβ2;

Рх1 = Мкmaxuп.з / rω1; Рх2 = Мкmaxuп.з / rω2.

где uп.з — передаточное число пары постоянного зацепления; rω1 и rω2 — радиусы делительных окружностей колес промежуточного вала.

Из равенства осевых сил находим

tgβ1 / tgβ2 = rω1 / rω2.

Если модули обоих зубчатых колес одинаковы, то

tgβ1 / tgβ2 = z1 / z2.

Полностью уравновесить осевые силы удается практически не всегда, так как угол наклона зубьев зависит от нормального модуля и расстояния между осями валов. В этом случае подшипники должны быть рассчитаны на восприятие неуравновешенной осевой силы.

На прочность зубчатые передачи рассчитывают в соответствии с ГОСТ 21354—87.

Материалом зубчатых колес служат легированные стали:

- цементуемые — 12ХН3А, 20ХН3А, 18ХГТ, 30ХГТ, 20ХГР и др. (глубина цементуемого слоя 0,8...1,5 мм);

- цианируемые — 35Х, 40Х, 40ХА и др. (глубина цианируемого слоя 0,2...0,4 мм);

- закаливаемые ТВЧ — 45, 55П.

Твердость поверхности зуба 57...64 HRCэ, сердцевины 30...46 HRCэ. Для этих материалов допускаемое напряжение изгиба σFP = 700...800 МПа; допускаемое контактное напряжение σHP = 1000...1200.

Валы. Валы коробок передач воспринимают скручивающие и изгибающие нагрузки. Кроме того, они должны быть достаточно жесткими, чтобы их прогиб не вызывал перекоса зубчатых колес, находящихся в зацеплении. Последовательность определения напряжений в валах: в трехвальных коробках передач — ведомый, промежуточный вал, ведущий вал; в двухвальных коробках передач расчет можно начинать с любого из валов. Пользуясь схемой, определяют силы, действующие на зубчатые колеса на всех передачах, по формулам, приведенным выше. Затем для каждой передачи находят реакции в опорах. После этого строят эпюры моментов и определяют наибольший изгибающий и крутящий моменты.

Результирующее напряжение

,

где dв.o — диаметр вала в опасном сечении.

Шлицованный вал рассчитывают по внутреннему диаметру.

Жесткость валов определяется по их прогибу. Силы Pхl и PRl дают прогиб fв валов в плоскости, в которой лежат оси валов, сила Р1 дает прогиб в перпендикулярной плоскости. Прогиб вала в каждой плоскости должен лежать в пределах 0,05...0,1 мм. Полный прогиб

, fп ≤0,2 мм.

Валы должны обладать достаточной жесткостью, поэтому напряжения в них невысокие (200...400 МПа).

Шлицы валов проверяют на смятие [τсм]=200 МПа.

Для изготовления валов применяют обычно те же материалы, что и для зубчатых колес.

Долговечность подшипников. Критерием оценки эксплуатационных свойств подшипников является базовая долговечность, соответствующая 90 %-ной надежности.

Для определения долговечности подшипника необходимо иметь следующие данные: радиальные и осевые силы, действующие на подшипник на каждой передаче; ресурс коробки передач до капитального ремонта (в километрах пробега автомобиля или часах); среднюю техническую скорость движения; распределение пробега на передачах.

Однако при расчете подшипника на долговечность в этих формулах вместо максимального значения крутящего момента двигателя Мкmах следует принимать расчетную величину крутящего момента аМктах (где а — коэффициент использования крутящего момента). Этот коэффициент зависит от отношения мощности двигателя к весу автомобиля и может быть определен по эмпирической формуле:

а = 0,96 — 0,136 ∙ 10-2 + 0,41 ∙ 10-6 N2уд,

где Nудудельная мощность, Вт/Н.

Базовая долговечность подшипника определяется в соответствии с ГОСТ 18865—82 по ресурсу (в млн. оборотов)

L10 = (C/P)n

где С — динамическая грузоподъемность подшипника (определяют по каталогу); Р — эквивалентная динамическая нагрузка; р — показатель степени (шариковые подшипники — р = 3, роликовые — р = 3,33).

Эквивалентная динамическая нагрузка на подшипник определяется для условий работы на каждой передаче:

радиальные Pr = (XVFr+YFa)KбKt

радиально-упорные, Pa = (XFr+YFa)KбKt

где Fr, Fa — соответственно радиальная и осевая нагрузки; X, Y — коэффициенты радиальной и осевой нагрузок (по каталогу); V — коэффициент вращения (при вращении внутреннего кольца V = l, при вращении наружного кольца V = l,2); Kб — коэффициент безопасности (для коробок передач Kб = 1); Kt — температурный коэффициент Kt = 1,10 при 150 °С). Следует иметь в виду, что коэффициенты X и Y различны в зависимости от типа подшипника и соотношения осевой и радиальной нагрузок.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее