125805 (Разработка технологической схемы очистки промышленных газов), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Разработка технологической схемы очистки промышленных газов", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "125805"

Текст 2 страницы из документа "125805"

Pг – разряжение или давление газа в газоходе, мм.рт.ст. (Pг = 15 мм.рт.ст.).

Объем необходимо вычислить для того, чтобы выбрать марку оборудования.

Чтобы найти количество выбрасываемых вредных веществ в год до очистки, необходимо:

где Сисх.вещества – исходная концентрация вещества до очистки (таблица 1), г/нм3;

V0 – объем газа при нормальных условиях (в данном варианте V0 = 60 тыс.нм3/час);

Тс – время работы технологического агрегата, час/сутки (Тс = 124);

Тг – время работы технологического агрегата, дней/год (Тг = 300).

Масса веществ, поступающих на очистку:

Чтобы найти количество выбрасываемых вредных веществ в год после очистки, необходимо:

где Сост.вещества – остаточная концентрация вещества после очистки, г/м3, которую найдем по формуле :

;

V0 – объем газа при нормальных условиях (в данном варианте V0 = 60 тыс.нм3/час);

Тс – время работы технологического агрегата, час/сутки (Тс = 124);

Тг – время работы технологического агрегата, дней/год (Тг = 300);

Кп – коэффициент подсоса, равный 7 % (таблица 1), учитывая который мы умножаем на 1,07.

Массы веществ после очистки:

  1. Масса пыли на входе в циклон:

концентрация пыли на выходе из циклона:

3;

масса уловленной циклоном пыли:

Объем газа при t = 150 º С:

3;

на очистку в тканевый рукавный фильтр пойдет:

концентрация пыли на выходе из фильтра:

3;

масса уловленной тканевым рукавным фильтром пыли:

Тогда на очистку в скрубберах, орошаемых известковым молоком, при очистке от диоксида серы пойдет:

концентрация пыли на выходе из двух последовательно установленных скрубберов:

3;

масса уловленной пыли при очистке от диоксида серы:

После очистки от пыли остаточная концентрация равна:

3;

Фактический годовой выброс пыли после очистки:

  1. После очистки от диоксида серы остаточная концентрация равна:

3;

Фактический годовой выброс диоксида серы после очистки:

После очистки от диоксида азота остаточная концентрация равна:

3;

Фактический годовой выброс диоксида азота после очистки:



2. Разработка вариантов схемы очистки газов и выбор наиболее рациональной схемы

На первом этапе проводим очистку от пыли. Медианный диаметр, равный 32 мкм, определяет использование тех или иных сухих механических аппаратов. Пылеосадительную камеру применять не целесообразно, так как она применяется при медианном диаметре от 40мкм. Следовательно, первым ставим циклон. Эти аппараты получили наибольшее распространение в промышленной практике, т.к. используемый в них способ разделения неоднородных пылегазовых потоков в центробежном поле более эффективен, чем гравитационное осаждение, поэтому они и применяются для отделения более мелких частиц пыли (до 5 мкм) [1, c.58]. При прохождении через циклон температура газового потока уменьшается до 115 ºC, а степень очистки ηц в данном аппарате находится, основываясь на информации о дисперсном составе пыли, указанном в таблице 1 исходных данных, по формуле [1,c. 53]:

где - фракционная эффективность, % (данные из таблицы 1);

- содержание фракций в газах, % (данные таблицы 1).

Тогда рассчитаем эффективность циклона:

Поскольку требуемая степень очистки пыли весьма значительна (99,96 %), а в ее состав входят частицы размером 0 – 5 мкм, не улавливаемые циклоном, и составляют 16 % от общего количества частиц, необходимо на завершающей стадии ее очистки использовать аппарат, который обеспечит улавливание таких мелких частиц. Электрофильтр не применить в данном случае мы можем вполне обоснованно: по значению удельного электрического сопротивления слоя пыли (УЭС) пыль относится к третий группе (пыли с УЭС = 1010…1013 Ом∙см), т.к. в данном варианте значение

УЭС = 4∙10 12 Ом∙см при температуре 50 ºC; А пыли с высоким УЭС наиболее трудно улавливаются в электрофильтре. Слой на осадительном электроде действует как изолятор, так как время его разрядки велико. Электростатические заряды, поступающие непрерывно с оседающей пылью, не отводятся на осадительный электрод, а создают напряжение на слое осевшей пыли, что приводит к нарушению работы электрофильтра.

Так электрофильтр применять не целесообразно, то применим тканевый рукавный фильтр с импульсной продувкой. В современном виде фильтрация обеспечивает улавливание самых разнообразных частиц размером от видимого до околомолекулярного. Фильтрация вне конкуренции, когда речь идет об обеспечении исключительно высокой эффективности улавливания очень мелких частиц ценой умеренных затрат. Фильтрованием принято называть процесс очистки газов от пыли путем пропускания их через пористые перегородки. При этом частицы пыли собираются на перегородке со стороны входа газа, а очищенный газ проходит через перегородки. В зависимости от фильтрующего материала фильтры могут быть тканевые, в которых используют не только ткани, но и нетканые материалы (войлок, фетр). Концентрация пыли 100г/м3.

Итак, на первом этапе проводим очистку от пыли с помощью выше перечисленных аппаратов, а именно: циклон и рукавный фильтр, а уловленная этими аппаратами пыль, имеющая экономическую заинтересованность с точки зрения сбыта ее за счет присутствия в ней олова и цинка, направляется на хранение на временный склад.

На втором этапе очистки газового потока будем проводить очистку от диоксида серы (SO2) и необходимо добиться степени очистки η (SO2) = 50 %, поскольку проводить очистку от диоксида азота будет более рационально и технико-экономически выгодно на последней стадии очистки газа, ведь выделяющееся при селективном каталитическом их восстановлении тепло можно использовать в различных целях производства. Для очистки газов от диоксида серы предложено большое количество хемосорбционных методов, однако на практике применяются лишь некоторые из них. Это связано с тем, что объемы отходящих газов велики, а концентрация в них диоксида серы мала, газы характеризуются высокой температурой. Однако при проведении очистки на предыдущих этапах мы понизили температуру до 90 ºC и исключили влияние на очистку от диоксида серы пыли, поскольку она была уловлена. Так, абсорбция диоксида серы водой связана с большими затратами (в связи с низкой растворимостью SO2 в воде для очистки требуется большой ее расход в абсорберы с большим объемом) [1, c.101]; рекуперационные методы очистки с регенерацией хемосорбента также экономически затратные (например, магнезитовый метод: SO2 поглощают оксид-гидроксидом магния, в процессе хемосорбции образуют кристаллогидраты сульфита магния, который сушат, затем термически разлагают на SO2 – содержащий газ, который перерабатывают в серную кислоту, и оксид магния, который возвращают на абсорбцию; к недостаткам метода относят сложность технологической схемы и неполное разложение сульфита магния при регенерации; цинковый метод: абсорбентом служит суспензия оксида цинка, образующийся оксид серы в результате реакции SO2 с оксидом цинка и водой перерабатывают, оксид цинка возвращают на абсорбцию; недостатком метода является образование сульфита цинка, который экономически нецелесообразно подвергать регенерации, необходимо непрерывно выводить из системы и добавлять в нее эквивалентное количество оксида цинка; содовый метод: сущность этого метода заключается в промывке отходящих газов водными растворами кальцинированной соды: этот способ обеспечивает хорошую очистку отходящих газов от SO2 с одновременным получением товарной соли NaHSO3 и Na2SO3, однако он не нашел широкого применения ввиду ограниченного сбыта этих солей), поэтому целесообразно будет проводить очистку известковым методом, относящимся к нерекуперационным методам, достоинствами которого являются простая технологическая схема, низкие эксплуатационные затраты, доступность и дешевизна сорбента, возможность очистки газа без предварительного охлаждения [1, c.101]. Известковый метод обеспечивает практически полную очистку газов от SO2 (η (SO2) = 80 %), однако нам нужно добиться эффективности η (SO2) = 50 %, для чего последовательно устанавливаем два скруббера, орошаемых известковым молоком. При этом фактическая полная степень очистки от диоксида серы находится по формуле [1,c. 53]:

При очистке газа от диоксида серы параллельно завершается очистка от пыли и температура газового потока на выходе из скрубберов, орошаемых известковым молоком, понижается до 30 ºC . Следует рассчитать суммарную степень очистки газов от пыли, достигаемую в выше указанных последовательно установленных аппаратах, по формуле [1,c. 53]:

Таким образом, приведенной последовательностью очистки от пыли легко достигается требуемая степень очистки 99,96%.

На третьем этапе будем проводить очистку газа от диоксида азота и необходимо будет достигнуть эффективность очистки, равную 99,2 %. Существующие методы очистки подразделяются на три группы: поглощение окислов азота жидкими сорбентами, поглощение окислов азота твердыми сорбентами и восстановление окислов азота до элементарного азота на катализаторе. Наиболее распространенным методом в нашей стране является очистка газов от окислов азота путем поглощения их растворами Na2CO3 и Са (ОН)2 , сравнительно реже — NaOH и КОН.

Метод щелочной очистки требует больших капитальных затрат и эксплуатационных расходов, но главный его недостаток в том, что степень абсорбции окислов азота не превышает 60—75% и, таким образом, этот метод не обеспечивает санитарной нормы очистки газов. Полученные в процессе очистки щелока нуждаются в дальнейшей многостадийной переработке для получения из них твердых солей.

Метод поглощения окислов азота твердыми сорбентами — силикагелем, алюмогелем, активированным углем и другими твердыми поглотителями — не нашел промышленного применения из-за сложности, малой надежности и дороговизны.

Метод каталитического восстановления окислов азота начал применяться только в последние годы и пока является наиболее совершенным методом.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5183
Авторов
на СтудИзбе
435
Средний доход
с одного платного файла
Обучение Подробнее