124253 (Расчёт ленточного транспортёра), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Расчёт ленточного транспортёра", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "124253"

Текст 2 страницы из документа "124253"

V2=0,23 принимаем КV=1.

К=1·1,02=1,02

Уточняем допускаемое напряжение:

=218,5МПа > σН=152,66МПа

Условие контактной прочности выполняется.

Проверка зубьев колеса на напряжения изгиба

,

где YF – коэффициент формы зуба, который принимают в зависимости от эквивалентного числа зубьев колеса ZV2.

ZV2=Z2/cos3γw (2.31)

ZV2=32/cos37,42=32,65

Назначаем YF = 1,43.

σF=4,44МПа < =70,74МПа.

Прочность зубьев на изгиб обеспечена.

Определение усилий в зацеплении

Окружная сила на колесе, равная осевой силе на червяке:

Ft2=Fa2=2T2/d2 (2.32)

Ft2=2·380,96/201/6=3,78кН

Окружная сила на червяке, равная окружной силе на колесе:

Fa2=2T1/dw1 (2.33)

Fb1=2·15,12/48,4=0,62кН

Радиальная сила:Fr= Ft2·tgαx , (2.34)

где αx =20˚ - угол зацепления.

Fr=3,78·tg20=1,38кН.

Тепловой расчёт.

tраб=20˚+ , (2,35)

где ψ – коэффициент, учитывающий отвод тепла тела в плиту или раму, ψ=0,3;

- допускаемая температура нагрева масла, =95˚С;

Кт – коэффициент теплоотдачи, Кт = 9 (Вт/м2·˚С)

А – площадь поверхности охлаждения, кроме поверхности дна, м2.

Приближённо площадь поверхности охлаждения можно определить по соотношению:

А=12·аw1,71

11

А=0,35м2

tраб=20˚+

Охлаждение за счёт поверхности корпуса редуктора.

3. Расчёт валов

3.1 Расчёт тихоходного вала

Материал вала Сталь 45.

σв=580МПа

σт=320МПа

Предварительный расчёт диаметров тихоходного вала

  1. Для выходного конца диаметр тихоходного вала:

Принимаем d=40мм

  1. Для диаметра под подшипник:

dn≥d+2t,

где t – высота буртика, t=2,5

dn=40+2∙2

принимаем стандартное значение по внутреннему кольцу подшипника dn=45мм.

  1. Диаметр вала под колесо рассчитываем по формуле:

dδn=dn+3r,(4.12)

где r – координата фаски подшипника, r=2

dδn=45+3·2=52мм

Разработка расчётной схемы

Для фиксации вала применяют следующее расположение подшипников: обе опоры располагаются по разные стороны от места посадки колеса на вал. С обеих сторон ставим конические однорядные роликовые подшипники. Обе опоры фиксируем, т.к. они ограничивают перемещение вала в одном из направлений и воспринимают радиальную и осевую нагрузки. Т.к. в опорах вала стоят роликовые конические подшипники, поэтому вычисляем величину «а»

Нахождение реакций в опорах в вертикальной плоскости

Считаем, что в вертикальной плоскости действует радиальная Fr и осевая Fa силы, которые вызывают появление реакций в опорах RAx, RBx и RAz. Плечо действия силы Fa равно

Составляем уравнение равновесия:

ΣМА=0 RBx2a-Fr2a+Fa2d2/2=0

ΣМB=0 Fa2d2/2+Fr2а-RAх2а=0

RBх=(1,38∙0,0425-0,62∙0,101)/0,085=-0,05кН

RАх=(1,38·0,0452+0,62∙0,101)/0,085=1,43кН

Проверка:

ΣFx=0 Fr2-RAx+RBx=0

1,38-1,43+0,05=0

ΣFz=0 RAz-Fa2=0

RAz=Fa2=0,62 кН

Определяем изгибающий момент:

Сечение I-I:Mх1=RAхz1,

при z1=0 Mx1=0

при z1=a Mx1=RAx·a=1430·0,0425=60,78Н∙м

Сечение II-II:Mx2=-RBx∙z2,

при z2=0 Mx2=0, при z2=a Mx2=-RBx∙z2=-50∙0,0425=-2,13H∙м

Нахождение реакций в опорах в горизонтальной плоскости

Условно считаем, что в горизонтальной плоскости действует только окружная сила Ft, которая вызывает появление реакций в опорах RAy и RBy.

Составляем уравнения равновесия:

ΣМА=0 RBy2a-Ft2a=0

ΣМB=0 Ft2a- RAy2a=0

RBy=3,78·0,0425/0,085=1,89кН

RАy=3,78·0,0425/0,085=1,89кН

Проверка:

ΣFy=0 Ft2- RАy-RBy=0

3,78-1,89-1,89=0

Строим эпюру изгибающих моментов.

Сечение I-I:Мy1= RAyz1,

при z1=0 Мy1= 0

при z1=a My1=RAy·a=1890∙0,0425=80,32H∙м

Крутящий момент

От середины полумуфты до центра колеса действует крутящий момент T=Ft∙d2/2=3780∙0,202/2=381,78 H∙м

Определение опасных сечений

1 опасное сечение – выходной конец вала:

  1. Шпоночный паз

  2. Галтель

2 опасное сечение – место посадки колеса на вал.

3.1.8. Расчёт первого опасного сечения

τ=T/0,2d3=381,78/0,2·0,043=29,7МПа

где ε – коэффициент влияния абсолютных размеров, ε=0,8;

S – коэффициент запаса прочности, S=1,5;

Кτ – коэффициент концентрации напряжения, Кτ =1,48;

τ-1 – предел выносливости при кручении

τ-1=0,28σв=0,28∙580=162,4 МПа

  1. Галтель - d=40мм., t=2,5мм., r=1,5мм.

;

Самым опасным концентратом напряжений в данном случае является галтель по которой и ведём расчет

τ=29,7МПа<[τ]=55,2МПа

Прочность вала в данном сечении обеспечена

Расчёт второго опасного сечения

σэкв=

τвх = T/0,2d3=381,78/0,2∙0,0523=13,58МПа

,

где S=1,5;

ε = 0,8;

σ-1 - предел выносливости при изгибе

σ-1 = 0,43 σв = 0,43·580=249,4МПа;

  1. Шпоночный паз, Кδ=1,73

  2. Посадка колеса с натягом

,

Кδ /ε=( Кδ /ε)0·ξ'· ξ'',

где (Кδ /ε)0=3, при изгибе и кручении;

ξ' – коэффициент, учитывающий предел прочности материала вала.

ξ'=0,305+0,0014· σв

ξ'=0,305+0,0014·580=1,117

ξ'' – коэффициент, учитывающий давление в посадке, ξ''=1.

Кδ /ε=3·1,117·1=3,35

Прочность вала в данном сечении обеспечена.

3.2 Расчёт быстроходного вала червяка

Материал вала червяка: Сталь 40Х, Т.О. улучшение и закалка ТВЦ, термообработка витков червяка: цементация и закалка, шлифование и полирование.

σт=750МПа, σв=900МПа.

Разработка эскиза вала

  1. Для выходного конца диаметр быстроходного вала считается по формуле: d≥(7…8) ,

d≥

Так как диаметр вала принятого нами двигателя d=22мм., то и диаметр выходного конца быстроходного вала примем равным 22мм.

  1. Для диаметра под подшипник:

dn≥d+2t,

где t – высота буртика, t=2,2

dn=22+2∙2,2=26,4мм.

принимаем стандартное значение по внутреннему кольцу подшипника dn=30мм.

  1. dБП=dп+3r=30+3∙2=36мм.

Разработка расчётной схемы

Для фиксации вала червяка применяем следующее расположение подшипников: обе опоры расположены по разные стороны от червяка; с одной стороны стоят два однорядных конических роликоподшипников, расположенные «враспор», с другой стороны один роликовый радиальный подшипник. Обе опоры фиксируются, т.к. они ограничивают перемещение вала в одном из направлений и воспринимают радиальную и осевую нагрузку.

Нахождение реакций в опорах в вертикальной плоскости

Считаем, что в вертикальной плоскости действует радиальная Fr и осевая Fa силы, которые вызывают появление реакций в опорах RAx, RBx и RAz. Плечо действия силы Fa равно

Составляем уравнения равновесия:

ΣМА=0 RBx(a+b)+Fr1a-Fa1·dw1/2=0

ΣМB=0 -RAx(a+b)-Fr1b- Fa1·dw1/2=0

ΣFx=0 RAx+ RBx- Fr1=0

RBx=(3,78∙0,024-1,38∙0,112)/(0,112+0,104)=-0,296кH

RAx=(-3,78∙0,024-1,38∙0,104)/(0,112+0,104)=-1,084кН

0,296+1,084-1,38=0

Определяем изгибающие моменты:

Сечение I-I:Mх1=-RAхz1,

при z1=0 Mx1=0

при z1=a Mx1=RAx·a=-1084·0,112=-121,4Н∙м

Сечение II-II:Mx2=-RBx∙z2,

при z2=0 Mx2=0

при z2=b Mx2=RBx∙z2=-296∙0,104=-30,8H∙м

Нахождение реакций в опорах в горизонтальной плоскости

Условно считаем, что в горизонтальной плоскости действует только окружная сила Ft1, которая вызывает появление реакций в опорах RAy и RBy.

Составляем уравнения равновесия:

ΣМА=0 RBy(a+b)-Ft1a=0

ΣМB=0 -RAy(a+b)+Ft1b=0

ΣFy=0 RAy+ RBy- Ft1=0

RBy=0,62·0,112/(0,112+0,104)=0,321кН

RAy=0,62·0,104/(0,112+0,104)=0,299кН

0,321+0,299-0,62=0

Определяем изгибающие моменты:

Сечение I-I:My1=RAyz1,

при z1=0 My1=0

при z1=a My1=RAy·a=299·0,112=33,4Н∙м

Сечение II-II:My2=RBy∙z2,

при z2=0 My2=0

при z2=b My2=RBy∙z2=-321∙0,104=33,4H∙м

Крутящий момент

От середины полумуфты до центра колеса действует крутящий момент T=Ft∙dw1/2=620∙0,048/2=15H∙м

Определение опасных сечений

1 опасное сечение – выходной конец вала:

  1. Шпоночный паз

  2. Галтель

2 опасное сечение – Галтель за подшипником

3 опасное сечение – по впадинам червяка

Расчёт первого опасного сечения

где ;

S=1,5

  1. Шпоночный паз -

  2. Галтель – d=22мм.; t=3,5мм.; r=1,5мм.;

t/r=2,3; r/d=0,053

Самым опасным концентратом напряжений является галтель, по нему и ведём расчёт

Прочность вала в данном сечении обеспечена.

Расчёт второго опасного сечения

По теореме подобия находим изгибающий момент действующий в сечении с галтелью

σэкв=

,

где S – коэффициент запаса, S=1,5;

σ-1 - предел выносливости.

σ-1 = 0,43 σв = 0,43·900=387МПа;(4.7)

ε = 0,73

d=36мм.; t=3мм.; r=3мм.; t/r=1; r/d=0,073

Кδ=1,65

Прочность вала в данном сечении обеспечена.

Расчёт третьего опасного сечения

σэкв=

,

где S=1,5;

σ-1 = 387МПа;

ε = 0,71

Кδ=1,97

Прочность вала в данном сечении обеспечена.

3.3 Проверяем червяк на прочность

Принимаем червяк как двухопорную балку круглого сечения диаметром d=30мм., нагруженной радиальной силой Fr.

Наибольший прогиб возникает в середине пролёта, его находим по формуле:

где l – длинна пролёта, м;

Е – модуль упругости, Е=2∙105МПа (для стали);

Ix – момент инерции, м4;

4. Расчёт и подбор подшипников

4.1 Расчёт подшипников быстроходного вала

Первоначально в опорах червяка, и в левой и в правой, было установлено по одному роликовому коническому подшипнику лёгкой серии. В результате расчёта оказалось, что подшипник в левой опоре, на которую действует осевое усилие, не обеспечивает заданной долговечности. Один подшипник средней серии также не достигает требуемого срока службы.

Поэтому в левую опору ставим двурядный роликовый конический подшипник средней серии, в правую роликовый радиальный с короткими цилиндрическими роликами типа 2000 средней серии.

Подбираем подшипники качения для опор вала червяка

Частота вращения вала n=695 мин-1.

Диаметр посадочной поверхности вала d=30мм.

Максимально длительно действующие силы:

Fr=1380 H,Fа1=3780H,

RAy=299H, RBy=321H,

RAx=1084H,RBx=296H.

Определяем суммарные радиальные силы в опорах.

Проверяем подшипники в левой опоре

Подшипник роликовый конический средней серии №7306А

Грузоподъёмность: Cr=52,8кН, Cr0=39кН, так как подшипник двухрядный, то Сrсумr∙1,625=52,8∙1,625=85,8кН.

Факторы нагрузки: l=0,31, Y=1,9, Y0=1,1.

Определяем эквивалентную нагрузку

РrA=(X·V·FrА+Y·Fa1)·Kδ·Kt,

где X, Y – коэффициенты радиальной и осевой нагрузок;

X=0,67, Y=1,5-для двурядного подшипника,

V – коэффициент вращения, V=1;

Kδ – коэффициент безопасности, Kδ = 1,4;

Kt – температурный коэффициент, Kt = 1 при t<100˚C.

РrA=(0,67·1·1124,48+1,5·3780)·1,4·1=8,99кН.

Определяем расчётную долговечность подшипника

,(5.9)

где Ln – расчётная долговечность подшипника, ч;

n – частота вращения вала, мин-1;

Р – показатель степени, равный для роликоподшипников 3,33;

а1 – коэффициент, учитывающий надёжность работы подшипника, а1=1;

а23 – коэффициент, учитывающий качество металла подшипника и условия эксплуатации, а23=0,9;

- требуемая долговечность подшипника, =10161,6 час.

Данный подшипник удовлетворяет требованию долговечности.

Проверяем подшипник в правой опоре

Подшипник роликовый радиальный с короткими цилиндрами роликами, средней серии №2306

Грузоподъёмность: Cr=36,9кН, Cr0=20кН.

Определяем эквивалентную нагрузку

РrA=X·V·FrВ·Kδ·Kt,(5.6)

где X – коэффициенты радиальной:X=0,67;

V – коэффициент вращения, V=1;

Kδ – коэффициент безопасности, Kδ = 1,4;

Kt – температурный коэффициент, Kt = 1 при t<100˚C.

РrA=0,67·1·436,64∙1,4·1=409,57Н.

Определяем расчётную долговечность подшипника

,(5.9)

где Ln – расчётная долговечность подшипника, ч;

n – частота вращения вала, мин-1;

Р – показатель степени, равный для роликоподшипников 3,33;

а1 – коэффициент, учитывающий надёжность работы подшипника, а1=1;

а23 – коэффициент, учитывающий качество металла подшипника и условия эксплуатации, а23=0,9;

- требуемая долговечность подшипника, =10161,6 час.

Данный подшипник удовлетворяет требованию долговечности

4.2 Расчёт подшипников тихоходного вала

Выбор подшипников

Частота вращения вала n=22,06 мин-1.

Диаметр посадочной поверхности вала d=45мм.

Максимально длительно действующие силы:

Fа=0,62кH,

RAy=1,89кH,RBy=1,89кH,

RAx=1,43кH,RBX=0,05кH.

Роликовые конические подшипники лёгкой серии № 7209.

Грузоподъёмность: Cr=62,7кН, Cr0=50кН.

е=0,4.

Определяем суммарные радиальные силы в опорах

Определяем суммарные нагрузки в опорах

SA=0,83·0,4·2,37=0,787кН

SB=0,83·0,4·1,89=0,627кН

S1=SВ=0,627кН

S2=SА=0,787кН

S12 и FА=620Н>S2-S1=160H

Fa1= S2=787Н

Fa2= Fa1+FA=787+160=947Н

Определяем эквивалентную нагрузку

Самым нагруженным является подшипник в опоре А, по нему и ведём расчёт.

РrA=(X·V·FrА+Y·Fa1)·Kδ·Kt

V=1;Kδ = 1,4;Kt = 1

Fa2/V·FrА=947/1·2370=0,4=е=0,4

X=1;Y=0

РrВ=(1·1·2,37+0·0,787)·1,4·1=3,32кН.

Определяем расчётную долговечность подшипника

,

где Ln – расчётная долговечность подшипника, ч;

n – частота вращения вала, мин-1;

Р – показатель степени, равный для роликоподшипников 3,33;

а1 – коэффициент, учитывающий надёжность работы подшипника, а1=1;

а23 – коэффициент, учитывающий качество металла подшипника и условия эксплуатации, а23=0,9;

- требуемая долговечность подшипника, =10161,6 ч.

Данный подшипник удовлетворяет требованию долговечности.

5. Расчёт шпоночных соединений

5.1 Расчёт шпоночного соединения на входном валу

Для передачи крутящего момента Т=15Н·м на вал d=22мм применяем призматическую шпонку по ГОСТ 24071-80

b=6мм;

h=6мм;

t1=3,5мм;

l=45мм.

Проверяем шпоночное соединение на смятие:

,

где Т – вращающий момент, Н∙м;

l – рабочая длинна шпонки, мм;

к = 0,4h – глубина врезания шпонки в ступицу, мм;

=80…120 Мпа;

к=0,4∙6=2,4мм

Условие смятия соблюдается.

5.2 Расчёт шпоночного соединения на выходном валу

Для передачи крутящего момента Т=381Н·м выходного вала d=40мм применяем призматическую шпонку по ГОСТ 24071-80

b=12мм;

h=8мм;

t1=5мм;

l=50мм.

Проверяем шпоночное соединение на смятие:

,

где Т – вращающий момент, Н∙м;

l – рабочая длинна шпонки, мм;

к = 0,4h – глубина врезания шпонки в ступицу, мм;

=80…120 Мпа;

к=0,4∙8=3,2мм

Условие смятия соблюдается.

5.3 Расчёт шпоночного соединения, сконструированного в месте соединения червячного колеса с валом

Для передачи крутящего момента Т=381Н·м выходного вала d=52мм применяем призматическую шпонку по ГОСТ 24071-80

b=16мм;

h=10мм;

t1=6мм;

l=45мм.

Проверяем шпоночное соединение на смятие:

,

где Т – вращающий момент, Н∙м;

l – рабочая длинна шпонки, мм;

к = 0,4h – глубина врезания шпонки в ступицу, мм;

=80…120 Мпа;

к=0,4∙10=4мм

Условие смятия соблюдается.

6. Подбор муфты

Для соединения вала электродвигателя с входным валом редуктора применяем муфту упругую со звёздочкой, а на выходном конце тихоходного вала ставим цепную муфту.

Размеры муфты подбираем по справочнику исходя из известных нам расчётных моментов и диаметров валов, на которые устанавливаются муфты.

Муфты подбираются по расчётному моменту:

Трн∙к≤[Т],

где к – коэффициент динамичности

к=1,25…1,5 – для ленточных транспортеров

ТрI=15,12∙1,3=19,7Н∙м≤[Т]=

ТрII=380,96∙1,3=495,2Н∙м≤[Т]=

7. Выбор и обоснование способа смазки передачи и подшипников

Для смазывания червячных передач широко применяют картерную смазку. Этот способ допустим при скорости скольжения до 10м/с, что подходит к нашему редуктору.

При вращении колеса масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, оттуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Для выбора смазки необходимо знать контактное напряжение σН=152,66МПа, а также скорость скольжения VS=2,26м/с.

Выбираем масло И-Т-Д-220 по ГОСТ 17479.4-87

Для смазки подшипников применяем ЦИАТИМ-202 или ЛИТОЛ-24.Смазочный материал подают под давлением специальным шприцом.

При верхнем расположении червяка червячное колесо погружается в масляную ванну на глубину:

hм=2,2m…0,25d2

hм=2,2∙6,3…0,25∙202

hм=13,9…50,5мм

Объем масляной ванны: V=0,106∙0,056∙0,28=0,0017м3 или 1,7л

Достаточность масляной ванны проверяется по удельному объёму:

Vуд=1,7/1,1=1,55л/кВт>0,7л/кВт

Литература

1. Дунаев Л.Ф., Леликов О.П. Конструирование узлов и деталей машин.- 4 -е изд., перераб. и доп.-М.: Высшая школа, 1985.- 416 с.

2. Иванов М.Н. Детали. – 5-е изд., перераб. –М.: Высшая школа, 1991. -383с.: илл.

3. Дунаев П.Ф. Конструирование узлов и деталей машин: Учеб. пособие для вузов. -3-е изд., перераб. и доп. – М.: Высшая школа, 1978. – 352с., ил.

4. Черемисинов В.И. Курсовое проектирование деталей машин: Учеб. пособие. – Киров: ВГСХА, 1998.- 163с.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее