124114 (Разработка электропривода моталки для свертывания металлической полосы в рулоны), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Разработка электропривода моталки для свертывания металлической полосы в рулоны", который расположен в категории "". Всё это находится в предмете "промышленность, производство" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "промышленность, производство" в общих файлах.

Онлайн просмотр документа "124114"

Текст 2 страницы из документа "124114"

Примем, что тормозной момент, развиваемый двигателем, равен номинальному. Тогда время торможения будет равно:

=9,2 с

При этом время работы двигателя увеличивается на 9,2 с и составляет:

с

Расчетная мощность двигателя:

РДВ РАСЧ.ДВИГ* =11,55 кВт.

Выбираем АД с нормальным скольжением и со следующими параметрами:

  • номинальная частота вращения 146,6 рад/с;

  • расчетная мощность > 11,55 кВт.

Наиболее подходящий двигатель 4А160S4У3 имеет следующие параметры:

  • мощность—15 кВт.

  • скольжение—2,7% (номинальная частота вращения—152,8 рад/с)

  • КПД—89%.

  • Момент инерции 0,01 кг*м2.

4.2 Расчет и выбор силовых преобразователей

Выбираем преобразователь Amron 3G3HV-B4150. Мощность преобразователя 15 кВт. Имеет встроенный датчик тока, регулятор скорости. Для входных сигналов регулятора скорости имеются входы по напряжению и по току.

Преобразователь обеспечивает теплозащиту.

Для преобразователя не нужен трансформатор.

Помехоподавляющий фильтр на выходе преобразователя также не ставим.

5 Расчет статических механических и электромеханических характеристик двигателя и привода

Определим номинальный момент двигателя:

Статическая механическая характеристика привода при частотно-токовом управлении, в области скольжений меньше 1,5 Sном описывается следующей зависимостью:

,

Где —жесткость механической характеристики. Определяется по формуле:

Видно, что механическая характеристика имеет линейный вид. Также для расчета необходимо найти максимальное значение момента с точки зрения нагрева. При этом учтем то, что машина является перегруженной:

Мmaxном* *1,4=98,2*1,6=157 Н*м

Рисунок 5.1—Механическая характеристика привода

Электромеханическая характеристика также будет линейна, т.к. при частотно-токовом управлении момент прямопропорционален току. Зависимость между моментом и током можно найти для номинальной точки.

А

Рисунок 5.2—Электромеханическая характеристика.

6. Расчет переходных процессов в электроприводе за цикл работы

Для расчета регуляторов необходимо рассчитать коэффициенты передачи датчиков обратных связей. Будем считать, что датчики линейны и не входят в насыщение. Максимальное выходное напряжение датчика примем равным 10 В. Тогда коэффициент передачи рассчитывается как отношение максимального выходного напряжения к максимальному значению контролируемого параметра.

  • Кдс=10/320=0,0313 В*с/рад;

  • Кдн=10/2000=0,05 В/Н.

При синтезе упростим модель привода:

  • Вследствие того, что момент инерции в процессе намотки изменяется в 16 раз, то для регулятора скорости момент инерции примем в 4 раза больше начального. Это повысит быстродействие при выборе провисания и выходе в режим с номинальным натяжением;

  • Будем считать, что натяжение возникающее в ленте прямо пропорционально удлинению;

  • Также будем считать, что радиус барабана не изменяется. Примем равным начальному значению. Это повысит быстродействие контура натяжения.

Расчет регулятора момента

Для получения наилучших динамических свойств, функциональный преобразователь должен быть реализован в силовом преобразователе.

Структурная схема контура момента с регулятором представлена на рисунке 6.1. Регулирование момента производим с помощью положительной обратной связи по скорости.

Рисунок 6.1—Контур момента

В статике:

М=(Kf*KРM*Uз+Kf*KРM*KПОСС*

Отсюда получается система уравнений:

Из второго уравнения системы находим КРМ:

0,0289

Регулятор момента представляется в виде П-регулятора.

Из первого уравнения находим коэффициент положительной обратной связи по скорости:

= 1.0821

Расчет регулятора скорости.

Для расчета контура скорости представим контур момента в виде звена:

*Kf*KM*KПОСС-1 Kf*KM*UЗ*(Эр+1)*М

Kf*KM*UЗ*=(Эр+1)*М

КМ= Kf*KM*

Рисунок 6.2—Контур тока с оптимизированным контуром скорости

Передаточная функция регулятора скорости имеет вид:

,

где Тэ—малая постоянная времени;

а=1—коэффициент демпфирования

Для определения передаточной функции объекта компенсации необходимо записать передаточную функцию разомкнутого контура скорости без учета регулятора и звеньев с малыми постоянными времени:

,

Тогда передаточная функция регулятора скорости будет иметь вид:

=104

Регулятор скорости представлен в виде П-регулятора.

Расчет регулятора натяжения.

Рисунок 6.3—Контур натяжения с оптимизированным контуром скорости

Передаточная функция объекта компенсации контура натяжения имеет вид:

,

где RБ—радиус барабана.

СУ—коэффициент упругости ленты. Равен половине жесткости возвратной пружины.

КДН—коэффициент передачи датчика натяжения

Передаточная функция регулятора натяжения, настроенного на модульный оптимум при двукратно интегрирующем контуре натяжения, будет иметь вид:

Регулятор натяжения представлен в виде ПИ-регулятора.

При моделировании системы учтем нелинейности регуляторов, а также зависимость параметров механической части от радиуса барабана, который в свою очередь зависит от количества оборотов барабана.

Механическая часть имеет следующий вид:

Рисунок 6.3—Механическая часть электропривода

В первую очередь необходимо рассчитать текущий радиус барабана. Для этого находим угол поворота барабана. Зависимость между радиусом и количеством оборотов имеет следующий вид:

,

где 0,005—толщина наматываемой ленты (хотя в реальном механизме намотать 5-ти миллиметровую металлическую пластину не так просто).

—угол поворота барабана.

После определения радиуса находим момент инерции. Он складывается из двух частей—приведенного момента инерции механизма и момента инерции рулона. Момент инерции рулона определяется как момент инерции кольца.

Далее находим момент трения. С учетом того, что в конце намотки сила трения увеличивается вдвое, то эта зависимость имеет следующий вид:

Далее находим полезный момент. Он равен произведению силы натяжения на радиус барабана.

Сила натяжения в свою очередь зависит от удлинения возвратной пружины. Рабочий ход датчика натяжения принят равным 1 метру. Тогда при провисании больше двух метром натяжение равно нулю. При провисании равном нулю сила натяжения равна произведению упругости полосы на удлинение. Упругость полосы намного больше упругости возвратной пружины, поэтому в этом случае ударный момент (что не является его рабочим режимом).

При намотке необходимо сначала разогнаться до пониженной скорости. Для этого в системе введён сигнал «Вкл.». Моделирует сигнал от датчика поступления полосы на барабан. В начальный момент он отключает регулятор натяжения и подает на вход регулятора скорости сигнал для разгона на пониженную скорость.

Аналогично действуют сигнал «Стоп». Он предназначен для торможения барабана после намотки. Как было сказано выше, барабан не затормозится под действием только момента холостого хода. При этом на регулятор скорости подается нулевое задающее напряжение.

Моделирование системы произведено в пакете Matlab. Структурная схема и графики переходных процессов представлены в графической части проекта.

7. Проверка правильности расчета мощности и окончательный выбор двигателя

Для проверки правильности выбора двигателя воспользуемся методом эквивалентного тока. По данному методу измеряется среднеквадратичное значение тока за цикл. Этот ток не должен превышать номинальный ток двигателя. Также должна обеспечиваться загрузка привода более, чем на 75%.

< Iном

При частотно-токовом управлении ток пропорционален моменту. Поэтому на модели измеряем текущий момент, делим его на номинальный и умножаем на номинальный ток. Так получим текущий ток. Возводим его в квадрат и подаем на интегратор. В конце цикла работы интегратор покажет значение интеграла. Получены следующие значения:

Найдем загрузку двигателя:

Видно, что двигатель не догружен до требуемого значения. Однако, двигатель меньшей мощности (11 кВт) составляет 73% от используемого. Это значит, что двигатель будет перегружен, что приведет к выходу его из строя. Также двигатель меньшей мощности не обеспечит требуемых динамических показателей: при переходе с повышенной скорости на рабочую нужен большой момент. Если его не обеспечить, то система начнет «раскачиваться» и в ней появятся возрастающие колебания.

Поэтому, оставляется выбранный двигатель.

8 Разработка схемы электрической принципиальной

8.1 Разработка схемы силовых цепей, цепей управления и защиты

Силовая цепь состоит из следующих элементов: автоматический выключатель, преобразователь, двигатель.

Автоматический выключатель обеспечивает защиты от токов короткого замыкания. Тепловая защита встроена в преобразователь.

В качестве цепи управления используются два датчика.

Первый показывает, что полоса подходит к барабану. По его сигналу на вход регулятора скорости подается напряжение 2,8 В, что заставляет двигатель разогнаться до пониженной скорости 90 рад/с. Время срабатывания датчика—за 0,5 с до подхода полосы к барабану.

Второй датчик показывает, что произошел захват полосы барабаном. По его сигналу на вход регулятора скорости подается сигнал с регулятора натяжения. Происходит намотка полосы.

Когда полоса заканчивается, то по сигналу первого датчика происходит отключение регулятора скорости от регулятора натяжения, и на вход регулятора скорости подается сигнал напряжением 0 В. Это вызовет останов двигателя.

8.2 Выбор элементов схемы

Автоматический выключатель

Ток защиты автомата выбирается в 2 раза больше тока, потребляемого преобразователем. Быстродействие автомата: 1 мин при токе 150% от номинального тока.

Номинальный ток двигателя 29 А.

Выбираем автомат на 29 А и 380 В.

Выбираем выключатель автоматический АЕ3023 10054У2А. Номинальный ток 45 А.

Датчики

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
420
Средний доход
с одного платного файла
Обучение Подробнее