166202 (Норборненна-2,5-диен и его свойства)

2016-07-31СтудИзба

Описание файла

Документ из архива "Норборненна-2,5-диен и его свойства", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166202"

Текст из документа "166202"

Список используемых сокращений

НБН, нор – С7Н10 – норборнен – 2, бицикло [2.2.1] гепт –2 – ен

НБД, нор – С7Н8 – норборнадиен – 2,5, бицикло [2.2.1] гепта –2,5 – диен

ЦПД – циклопентадиен – 1,3

АА – аллилацетат

АФ – аллилформиат

БАН – бис(η3-аллил) никель

acac – ацетилацетон

Ме – метил

Et – этил

Pr – пропил

Bu – бутил

Ph – фенил

all – аллил



Введение

Норборненна- 2,5-диен (НБД) или бицикло [2.2.1] гептан-2,5-диен и его производные приобретают все большее значение в различных сферах человеческой деятельности, появляются все новые области их использования. Эти соединения нашли применение в медицине, сельском хозяйстве, ракетной технике, в производстве полимерных материалов с уникальными свойствами, микроэлектронике и в качестве конверторов солнечной энергии. Количество патентов, связанных с получением и применением производных НБД и норборнена-2 (НБН) достигает 10 тыс.

Исключительно важным является то обстоятельство, что сам НБД и некоторые его простейшие производные имеют надежную сырьевую базу. Это крупнотоннажные продукты нефтепереработки: циклопента-1,3-диен (ЦПД), ацетилен, алкены и алкадиены различного строения. Производство ЦПД может легко сочетаться с производством других продуктов нефтепереработки, в частности этилена.

Чрезвычайно интересными и привлекательными в отношении реакций с участием НБД и НБН-производных представляются возможности металлокомплексного катализа.

Реакции циклоприсоединения с участием НБД являются наиболее интересными и перспективными для практического использования. Несмотря на большое количество работ в этом направлении, синтетические возможности НБД в такого рода превращениях далеко не исчерпаны.

Реакция каталитического аллилирования НБН впервые описана в работе M. Catellani и G. Chiusoli в 1979 году. Необычный характер ее протекания связан не только с образованием интересных карбоциклических структур, но и возможностью активации С-С и С-Н – связей в мягких условиях.

Необычность реакции заключается в характере присоединения аллильной группы – не традиционным, а циклическом и даже с разрывом С – С-связи.

Катализируемое аллильное алкилирование норборненовых НБД и НБН – производных позволяет в одну технологическую стадию получить сложные полициклические углеводороды, содержащие метиленциклобутеновый фрагмент или метиленовую и винильную группы.

Дальнейшее развитее и усовершенствование методов металлокомплексного катализа применительно к реакции аллилирования НБД и его производных, детальное изучение механизма процесса, несомненно, приведут к увеличению выхода и селективности уникальных продуктов, сделают их производство технологичным и экономически оправданным.



Глава 1. Литературный обзор

Н орборненна - 2,5-диен 1 (бицикло [2.2.1] гептан-2,5-диен) (НБД) является бициклическим диеновым углеводородом норборненового ряда. Впервые он был получен в 1951 г. По реакции диенового синтеза из циклопента-1,3-диена и ацетилена.

1

Наличие в молекуле НБД метиленового мостика, "стягивающего" С1 - и С4 - атомы приводит к цисоидному напряжению сжатия и значительному искажению валентных углов, а следовательно, и к повышению внутренней энергии молекулы.

Расстояния между атомами углерода и валентные углы в молекуле НБД

Расстояние, Å

Валентные углы, град.

С12 1,522

С123 109,1

С17 1,558

С217 96,4

С23 1,333

С216 102,2

В первую очередь это сказывается на реакционной способности двойных связей, энергия напряжения в которых оценивается в 25 кДж/моль для НБН и в 58 кДж/моль для НБД (на две двойные связи). π-Электронные орбитали последнего взаимодействуют, что обуславливает их гомосопряжение и делает возможным участие НБД в реакции диенового синтеза в качестве как диена, так и диенофила. Таким образом, наличие двух внутрициклических двойных связей, обладающих повышенной реакционной способностью, и их гомосопряжение определяют основные свойства НБД.

Среди реакций НБД можно выделить основные группы: изомеризации (распада) и присоединения. Помимо этого НБД свойственны реакции окисления и полимеризации.

В 1979 году в работе Кателлани и сотр.1 впервые была показана возможность протекания реакции аллилирования НБН под действием комплексов никеля(0).

Схема

1.1. Механизм образования продуктов аллилирования НБН

Этот процесс включает гидридное элиминирование после встраивания молекулы субстрата по связи Ni – аллил. В присутствии НБН образуется интермедиат А cis, exo – строения. Далее происходит замыкание четырехчленного кольца (направление a), с образованием cis, exo продукта I, имеющего метиленциклобутановый фрагмент. Реакция может реализовываться по направлению b с образованием продукта II (exo), имеющего метиленовую и винильную группу.

Соотношение продуктов зависит от температуры: если при 800С А/В =3/7, то при 200С соотношение продуктов А и В равно 1/1.

Диспропорционирование аллильных лигандов в η3-аллильных комплексах переходных металлов при взаимодействии с норборнадиеном и НБН - производными.

Перераспределение водорода между η3-аллильными лигандами – наименее изученное направление превращения комплексов переходных металлов. Это свойство проявляется количественно в реакции Ni(C3H5) 2 с НБД, приводящей к широкой гамме продуктов окислительного аллилирования (I – III) и восстановления (СзН6) 10.

N i(C3H5) 2 + 3,3C7H8 → C10H12 + 0,3 C10H14 + 0,7 C3H6 + Ni(C7H8) 2 (1)

Указанные соединения образуются в результате присоединения к НБД аллильной группы, ранее принадлежавшей комплексу.

Взаимодействие Ni(C3H5) 2 с НБД протекает количественно при 25°С за несколько минут и сопровождается изменением окраски реакционного раствора. Желтый цвет, обусловленный Ni(СзН5) 3, переходит в темно-красный, характерный для олефиновых комплексов Ni(0). Интенсивность окрашивания пропорциональна исходной концентрации аллильного комплекса. При образовании темно-красных растворов существенно уменьшается концентрация НБД, расход которого составляет 3,3 моля на 1 моль Ni(C3H5) 2. Реакцию (1) удобно анализировать в виде суммы двух уравнений,

0,7 Ni(C3H5) 2 + 3C7H8 → С10Н12 + С3Н6 + Ni(C7H8) 2 (2)

0,3 Ni(C3H5) 2 + 4С7Н8 → С10Н12 + С10Н14 + Ni(C7H8) 2 (3)

относительный вклад которых составляет 0,7 и 0,3 соответственно.

Каждое уравнение формально описывает реакцию переноса атома водорода между аллильными лигандами. При этом более ненасыщенный фрагмент С3Н4 всегда входит в состав аддуктов С10Н12, в то время как фрагмент С3Н6 может находиться как в связанном состоянии (С10Н14), так и в виде пропилена. Суммарное количество пропилена и соединения С10Н14 эквимолярно сумме продуктов с брутто-формулой С10Н12.

Анализируя зависимость выхода продуктов I-III от мольного отношения НБД/NiA112, видно, что увеличение отношения до 10: 1 способствует образованию продукта восстановительного аллилирования. Дальнейший рост отношения практически не влияет на его выход, максимальное значение которого при данной температуре определяется природой комплекса. Прослеживается увеличение выхода I-III за счет С3Н6 (С4Н8) с ростом эффективного положительного заряда на никеле: Ni(2-CH3C3H4) 2> Ni(C3H5) > Ni(l-CH3C3H4) 2.

Температура в меньшей степени влияет на образование продуктов восстановительного аллилирования. Их выход незначительно падает с повышением температуры.

При исследовании влияния концентрации НБД на соотношение Сва/СAll+H было выяснено, что эта зависимость для всех комплексов никеля носит линейный характер, этот факт свидетельствует о более высоком кинетическом порядке по НБД для продуктов восстановительного аллилирования по сравнению с пропиленом или бутенами.

Общий характер диспропорционирования водорода между η3-аллильными лигандами подтвержден для комплексов различных переходных металлов Со, Fe, Ni, Rh, Pd и Pt. Из данных таблицы видно, что строение аддуктов определяется закономерностями, присущими и другим процессам циклоприсоединения с участием НБД 12313131. Так, при использовании комплексов никеля, палладия и платины образуются соединения, имеющие двойную связь в норбоненовом кольце. Этот факт предполагает монодентатный характер координации НБД в комплексах переходных металлов подгруппы никеля. Близость соотношений продуктов для этих металлов указывает на сходство их координационных возможностей. Однако активность комплексов в изучаемой реакции существенно уменьшается от никеля к платине, что связано с возрастанием эффективного положительного заряда металла в этом ряду.

Крайне неустойчивые комплексы Fе(С3Н5) 3 и Со(С3Н5) 3 активно взаимодействуют с НБД уже при температуре его плавления (-19°С). Помимо продуктов с НБН-фрагментом I – II в значительных количествах образуется соединение с нортрициклановой структурой III. Такой набор продуктов обусловлен большими координационными возможностями железа и кобальта по сравнению с переходными металлами подгруппы никеля. Подобным образом с НБД взаимодействует Rh(С3Н5) 3, однако его активность в исследуемой реакции существенно ниже.

Результаты балансовых и кинетических опытов, а также информация о строении образующихся продуктов позволяют высказать некоторые соображения о механизме взаимодействия Маlln с НБД (рис.1.1).

Механизм реакции основан на известных свойствах η3-аллильных комплексов: η3→ η1-изомеризации аллильных лигандов, внедрении ненасыщенных молекул по η1-связи металл-углерод, стадиях β-элиминирования и гидридного переноса, а также способности молекулы НБД как к монодентатной, так и хелатной координации.

Образование продуктов восстановительного аллилирования обусловлено координацией и внедрением второй молекулы НБД. При распаде общего комплекса в результате различных направлений протекания стадии гидридного переноса происходит формирование продуктов восстановительного аллилирования и С3Н6 (C4H8).

Образующийся после внедрения второй молекулы НБД координационно ненасыщенный комплекс должен быть крайне неустойчивым. Вследствие этого в аллилнорборненовом фрагменте не успевают произойти многочисленные превращения, имеющие место при внедрении первой молекулы НБД. В результате образуется только один продукт восстановительного аллилирования (C10H14) в отличие от широкого ассортимента соединений C10H12.

Рисунок 1.1. Механизм взаимодействия Мalln с НБД

Ключевая стадия – β-гидридный перенос - подтверждается хромато-масс-спектрометрическим исследованием продуктов модельных систем: Ni(C3D5) 2 – НБД и Ni(С3Н5) 2 – НБД-D8. Их строение указывает на участие в процессе атомов водорода, принадлежащих как НБД, так и аллильному фрагменту и занимающих β-положение по отношению к металлу (рис.1.2).

Предложенный механизм объясняет строение всех продуктов аллилирования НБД. Для каждого переходного металла характерен индивидуальный набор соединений и, следовательно, определенная совокупность стадий, приводящая к их образованию.

Так для Malln подгруппы никеля характерна совокупность стадий, объединенная общим направлением (а). Для комплексов железа, кобальта и родия реализуются оба направления: (а) - связанное с монодентатной координацией НБД в комплексе и (б) - проявляющееся при хелатной его координации.

Реакции окислительно-восстановительного диспропорционирования для различных субстратов (различные классы ненасыщенных соединений, отличающиеся природой и реакционной способностью кратной связи) могут быть разделены на три группы:

Реакция не идет (А)

Ni(C3H5) 2 + ненасыщенный углеводород Гексадиен-1,5 (Б)

Продукты аллилирования (В)

А. этилен, пропилен, пентен-1, пентен-2, 2-метиопентен-2, гексадиен-1,5, винилциклопропан, метиленциклобутан, циклопентен, циклогексен;

Б. аллен, бутедиен-1,3, метиленциклопропан, циклопентадиен-1,3, трансциклооктадиен-1,5;

В. Норборнадиен, норборнен и его 5,6-производные.

В первую группу входят соединения, не взаимодействующие с бис(π-аллил) никелем. Это линейные и циклические алкены, диены с изолированными двойными связями (гексадиен-1,5), а также соединения, у которых двойная связь примыкает к умеренно напряженному углеродному кольну (метиленциклобутан).

Во вторую группу соединений входят диеновые углеводороды с кумулированными (аллен) и сопряженными (бутадиен-1,3, циклопентадиен) двойными связями, а также олефины у которых двойная связь примыкает к напряженному углеродному кольцу (метиленциклопропан). Эти соединения вытесняют из бис(π-аллил) никеля гексадиен-1,5. При этом образуется π-комплекс никеля с соответствующим соединением, способный в ряде случаев катализировать его циклическую олигомеризацию.

Наконец, в третью группу входят НБД, НБН и его многочленные 5,6-производные.

Таким образом, субстратом для реакции аллилирования являются соединения с внутрициклической двойной связью.

А нализ величин энергий напряжения двойных связей (табл.1.1) в циклоалкенах приводит к выводу, что уникальная реакционная способность двойных связей в НБД - и НБН-производных связана с внутримолекулярным напряжением углеродного каркаса. Эта энергия, частично высвобождающаяся при координации, полностью компенсирует затраты на только одного аллильного лиганда.

Рисунок 1.2. Фрагмент механизма для модельной системы Ni(C3D5) 2 – НБД.

Таблица 1.1. Энергия напряжения двойной связи в некоторых циклоалкенах и метиленциклоалканах.

Субстрат

Напряжение двойной связи, кДж/моль

Субстрат

Напряжение двойной связи, кДж/моль

58,2 (две связи)

34,8

25,1

12,6

Продолжение.

15,5

11,4

9,6

8,1

0,8

Это условие, видимо, играет важнейшую роль для дальнейшего протекания процесса по пути окислительно-восстановительного диспропорционирования. Энергия напряжения двойной связи должна находиться в пределах 25-30 кД ж/связь. Следовательно, в реакции аллилирования могут вступать непредельные углеводороды имеющие напряженную внутрицеклическую двойную связь.

Таким образом, стехиометрическое взаимодействие может служить своего рода индикатором, указывающим на принципиальную возможность того или иного соединения вступать в реакцию каталитического аллилирования.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее