166154 (Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов азота), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов азота", который расположен в категории "". Всё это находится в предмете "химия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "химия" в общих файлах.

Онлайн просмотр документа "166154"

Текст 4 страницы из документа "166154"

А) поликристаллы,

Б) монокристаллы;

Ме/ZSM-5 (где Ме = Н, Cu, Co, Fe, другие);

цеолиты иных типов;

оксиды металлов;

перовскиты;

гетерополикислоты;

углерод - и графитсодержащие материалы,

- столбчатые глины (pillared clays – PILC).

Всем вышеизложенным требованиям отвечают также катализаторы блочного типа, также именуемые иногда "пчелиными сотами". Эти катализаторы относятся к типу так называемых структурированных катализаторов, одновременно удовлетворяют многим весьма специфичным требованиям, наряду с упоминавшимися выше. К ним относятся:

интенсивный массообмен;

большое отношение поверхности к объему;

Поэтому в последнее десятилетие для процесса восстановления оксида азота все более широкое распространение получают катализаторы блочного типа. Однако они все еще принадлежат к числу наименее изученных.

П



ри анализе каталитических процессов проводимых на блочных катализаторах (см рис1) необходимо учитывать целый ряд диффузионных процессов, связанных с расположением катализатора на стенках прямых каналов, по которым двигается газовый поток.

Рис1. Движение газового потока в монолитном катализаторе.

Чтобы более детально изучить процесс на блочных катализаторах, имеет смысл воспользоваться моделированием химических процессов.

1.4. Математическое моделирование химических процессов

В прошедшее десятилетие было предпринято очень много попыток описать математически процессы, протекающие при восстановлении оксида азота. В частности, при помощи математических моделей изучались эффекты массопереноса на блочном катализаторе. Была разработана двухмерная математическую модель для движения газового потока в слое катализатора, в которой особое внимание уделялось таким параметрам, как скорость движения потока, а, следовательно, и режим течения газового потока, диаметр монолитного канала, коэффициент диффузии и скорость химической реакции. Адекватность предложенной модели была проверена путем сравнения расчетных данных с экспериментальными. Сравнение показало, что и внутре-, и внешнедиффузионные ограничения должны приниматься во внимание, особенно при высоких температурах.

Работы этих ученых показали, что математическое моделирование процессов является очень перспективным и достаточно точным методом изучения химических процессов вообще и процессов восстановления оксидов азота в частности.

Математическая модель определяется лимитирующей стадией процесса. В случае, когда лимитирующей стадией является химическая реакция, математическая модель будет включать в себя дифференциальные уравнения первого порядка, описывающие изменение концентрации каждого вещества во времени:

где [x] – концентрация интересующего нас вещества,

t – время,

rx – скорость изменения концентрации данного вещества во времени, имеющая, следующий вид:

, где

- предэкспоненциальный множитель,

энергия активации процесса,

R – универсальная газовая постоянная,

С – концентрации реагентов

m, n – порядок реакции по веществам a и b соответственно. В данной работе все порядки приняты равными единице.

Если же лимитирующей стадией процесса является внутренняя или внешняя диффузия, математическая модель будет состоять из дифференциальных уравнений второго порядка. В эти уравнения входят также такие параметры, как скорость движения потока, размер пор катализатора, коэффициент диффузии. Такие зависимости позволяют определить концентрацию вещества в зависимости от длины реактора и расстояния от его оси. Вид этих уравнений представлен ниже.

Для нахождения концентрации вещества в потоке:

Для нахождения концентрации вещества на поверхности и внутри катализатора:

Скорость реакции разложения оксида азота описывается при помощи кинетической модели по механизму Лэнгмюра-Хиншельвуда:

Перечень символов:

- концентрация в потоке;

- концентрация в твердой фазе (на поверхности катализатора и внутри его пор;

- коэффициент эффективной диффузии;

r – радиальная координата;

- коэффициент молекулярной диффузии;

k – константа скорости

ra – скорость реакции;

Z – аксиальная координата.

U – скорость газового потока;

1.5. Лимитирующие стадии гетерогенного каталитического процесса.

Как известно, у гетерогенной каталитической реакции может быть несколько лимитирующих стадий. Лимитирующей стадией может являться:

Внешняя диффузия реагентов или продуктов реакции. В этом случае скорость процесса будет определяться скоростью, с которой частицы реагентов из ядра газового потока будут попадать на поверхность катализатора или тем, насколько быстро образовавшиеся частицы будут уходить с поверхности катализатора в ядро газового потока.

Внутренняя диффузия реагентов или продуктов реакции. В этом случае скорость процесса определяется тем, насколько быстро молекулы реагента проникают в поры катализатора или же тем, как быстро молекулы продукта реакции освобождают пространство пор.

Адсорбция или же десорбция на поверхности катализатора. В такой ситуации скорость процесса будет определяться тем, насколько быстро происходит насыщение активных центров катализатора молекулами веществ или насколько быстро десорбируются полученные вещества с поверхности катализатора.

Непосредственно химическая реакция – в этом случае скорость процесса определяется скоростью взаимодействия веществ активных центрах катализатора.

1.6. Радикально-цепные процессы

В литературе существует ряд работ, показывающих, что большинство реальных химических реакций являются сложными и идут через посредство активных промежуточных продуктов. Реакция между двумя стабильными молекулами требует большой энергии активации. Поэтому скорость такой реакции мала. Реально наблюдаемые нами реакции идут обычно "окольными" путями, позволяющими обойти этот высокий энергетический барьер.

В случае гомогенных реакций первой стадией является обычно образование из исходных веществ тех или иных активных промежуточных продуктов. Природа этих продуктов в настоящее время еще недостаточно хорошо изучена, но, надо полагать, она может быть различной. Во многих случаях роль активных промежуточных продуктов, несомненно, играют свободные радикалы или даже свободные атомы. В других случаях это могут быть и довольно сложные и относительно стабильные молекулы, обладающие, однако, по тем или иным причинам, повышенной реакционной способностью, например, органические перекиси.

Активные промежуточные продукты, реагируя с исходными веществами, переводят их в конечные продукты реакции. Эти процессы требуют сравнительно малой энергии активации (особенно когда активными продуктами являются свободные радикалы или атомы) и идут с большей скоростью. Но первичное образование активных продуктов из стабильных исходных молекул требует большой энергии активации, и поэтому с большой скоростью проходить не может.

Для того чтобы реакция посредством активных продуктов могла протекать достаточно быстро, необходимо, чтобы активные продукты регенерировались при реакции, т.е. чтобы при взаимодействии активных продуктов с исходными веществами получались не только стабильные конечные продукты реакции, но и новые молекулы активных промежуточных продуктов. Такие реакции, в которых имеет место регенерация активных промежуточных продуктов, называются цепными(3, стр 17) Как было установлено Семеновым, Хиншельвудом и др., большинство реальных гомогенных сложных реакций являются цепными.

Обозначим концентрацию активного продукта как x. Изменение этой величины со временем для цепных реакций подчиняется следующему кинетическому уравнению:

где no – скорость зарождения цепей;

f – константа скорости процесса разветвления цепей (в общем случае не совпадает с общепринятым понятием константы скорости элементарной реакции

g - константа скорости обрыва цепей.

Под зарождением цепей подразумевают начальный процесс образования продукта из исходных веществ, под разветвлением цепей – процесс, в котором одна молекула активного продукта, реагируя с исходными веществами, вызывает образование двух или нескольких молекул активного продукта; под обрывом цепей – процесс, при котором активный продукт безвозвратно уничтожается.

1.7. Заключение

Актуальность проблем очистки газовых выбросов от оксидов азота подтверждается значительным количеством тематических публикаций. Из литературных данных видно, что интерес исследователей к этой проблеме не угасает. Наиболее перспективными каталитическими методами удаления оксидов азота являются процессы селективного каталитического восстановления NOx с использованием в качестве восстановителей аммиака и углеводородов.

Проблема очистки газовых выбросов от NOх газов дизельных двигателей, в которых сгорание производится на “бедных” смесях, содержащих значительный избыток кислорода до сих пор не решена, т. к. в таких смесях оксиды азота обычно подвергаются окислению, а не восстановлению.

Наиболее эффективными катализаторами являются катализаторы блочного типа. Однако процессы, происходящие на таких катализаторах, по-прежнему изучены слабо. Математическое моделирование дает возможность более детально рассмотреть механизм данного процесса, оценить влияние различных стадий, а также параметров химического процесса на итоговую конверсию оксида азота, сделать предположения об условиях, в которых целесообразно будет проведение процесса.

2. ПОСТАНОВКА ЗАДАЧИ И ПОСТРОЕНИЕ МОДЕЛИ.

2.1. Экспериментальные данные.

С
уществуют экспериментальные данные, которые нельзя объяснить влиянием диффузии (рис2).

Р

Температура

o

C

ис 2. Зависимость конверсии оксида азота от температуры.

На блочном катализаторе в области низких температур конверсия больше, чем на гранулированном. Гранулированный катализатор обладает большей свободной поверхностью, а, следовательно, диффузия должна быть интенсивнее, а следовательно, и конверсия выше. Значит, определяющим фактором является не диффузия, а химизм процесса.

Существуют работы …., в которых исследуется влияние свободной поверхности катализатора на конверсию оксида азота (рис 3). Существуют также экспериментальные данные, ясно указывающие на то, что конверсия оксида азота линейно уменьшается с ростом удельной поверхности катализатора.




Рис 3. Зависимость конверсии оксида азота от площади катализатора.

Учитывая наше допущение о том, что процесс восстановления оксида азота является радикальным, логично предположить, что:

  • скорость продолжения цепи прямо пропорциональна свободному объему катализатора, так как с увеличением свободного объема катализатора увеличивается число образовавшихся в газовой фазе радикалов;

  • скорость обрыва цепи пропорциональна доле свободной поверхности, так как с увеличением свободной поверхности катализатора все больше радикалов остается на ней, не участвуя в газофазном процессе.

2.2. Формулировка основных допущений

Схема рассматриваемой реакции:

NO + CxHy N2 + CO2

Постадийно:

CxHy + O2 + (1)

+ NO N2 + CO2 (2)

+ O2 CO2 (3)

Были сформулированы основные допущения, на основании которых создавалась математическая модель данного процесса (1,).

Лимитирующей стадией является химическая реакция.

Скорости изменения концентрации веществ описываются дифференциальными уравнениями первого порядка.

Реакция протекает с образованием свободных радикалов.

Радикалы реагируют с исходными веществами, переводя их в конечные продукты. Реакции с участием радикалов протекают по механизму, предложенному Н.Н. Семеновым.

Скорость роста цепи пропорциональна доле свободного объема катализатора

Скорость обрыва цепи пропорциональна доле свободной поверхности катализатора.

2.3. Составление математической модели

Составленная математическая модель процесса приведена ниже.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее