TO_lekcija (Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка), страница 6

2016-07-31СтудИзба

Описание файла

Документ из архива "Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка", который расположен в категории "". Всё это находится в предмете "металлургия" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "металлургия" в общих файлах.

Онлайн просмотр документа "TO_lekcija"

Текст 6 страницы из документа "TO_lekcija"

Взаимодействие легирующих элементов с железом и углеродом.

По взаимодействию с железом, легирующие элементы делятся на три группы:

1. Легирующие элементы, отличающиеся слабым взаимодействием с железом. Такие легирующие элементы либо вообще не взаимодействуют с железом, либо образуют твердые растворы очень малых концентраций. Например, Pb, K, S. Такие легирующие элементы располагаются, как правило, по границам зерен, ухудшая тем самым связь между ними. В результате прочностные свойства падают, но улучшается обрабатываемость резанием (автоматная сталь).

2. Легирующие элементы, отличающиеся образованием с железом твердых растворов. Как правило, увеличивается прочность и твердость, но вместе с этим одновременно понижается пластичность и вязкость. Образование твердых растворов может идти по типу замещения или внедрения. Растворы замещения образуют легирующие элементы – металлы, а твердые растворы внедрения образуют легирующие элементы – неметаллы (B, N). Образование твердых растворов внедрения особенно сильно увеличивает твердость и понижает пластичность. Лишь один легирующий элемент увеличивает прочность, пластичность, вязкость и одновременно снижает порог хладноломкости – это Ni.

3. Образование интерметаллидов. При образовании легирующими элементами химических соединений с железом, образуются интерметаллидные фазы: FeCr, FeAl. Это приводит к резкому увеличению прочности и твердости, но одновременно снижает вязкость и пластичность.

По взаимодействию с углеродом, легирующие элементы делятся на две группы:

Карбидообразующие. К ним относят Cr, W, Ti, Mo. К не карбидообразующим относят Ni, Al, Cu, Si, Mn. Карбиды относятся к фазам внедрения, поэтому их появление в сталях вызывает резкое увеличение прочности и твердости, с одновременным снижением вязкости и пластичности. Легирующие элементы влияют на положение критических точек в сталях и основных линий на диаграмме Fe-C. Введение карбидообразующих элементов повышает точки А1 и А3, т.к. карбиды легирующих элементов более устойчивы и растворяются в железе при более высоких температурах, чем обычный цементит. Поэтому введение легирующих элементов, образующих карбиды, вызывает необходимость повышения температур отжига и закалки. Введение карбидообразующих элементов смещает влево точки S и E на диаграмме Fe-C, поэтому, чем больше легирующих элементов, тем меньше содержание углерода в перлите. Смещение точки Е влево может приводить к тому, что при содержании углерода 1,3-1,5% в структуре могут наблюдаться выделения эвтектики – ледебурита. В обычных углеродистых сплавах ледебурит присутствует только в чугуне.

Влияние легирующих элементов на фазовые превращения при термообработке.

Введение легирующих элементов изменяет положение С – образных кривых на диаграмме изотермического превращения аустенита.

Практически все легирующие элементы смещают С – образные кривые вправо, а точки Mn и Mk вниз. И только один элемент является исключением, действует наоборот – это Co. Из-за смещения С – образных кривых вправо, изменяется критическая скорость охлаждения при закалке.

При содержании легирующих элементов более 15-20%, интервал перлитного превращения смещается вправо настолько, что при охлаждении на воздухе превращение не наступает вовсе. Начало и конец мартенситного превращения смещается в область отрицательных температур. В результате Аустенитная структура стали сохраняется при любых температурах. Такую сталь называют сталью Аустенитного класса.

Наличие легирующих элементов в стали делает более устойчивым закаленное состояние, т.е. мартенсит сохраняется при нагревании в процессе отпуска до более высоких температур. Так, если в обычной углеродистой стали мартенсит превращается в троостит уже при нагревании до 250º С, то в легированных сталях мартенсит может сохраняться до температур 450-550º С. Это позволяет использовать такую сталь при работе, например, с более высокими скоростями резания, или в качестве инструмента для горячей штамповки.

Изменение твердости легированной стали при отпуске.

Сохранение твердости легированной стали до более высокой температуры отпуска объясняется повышенной устойчивостью мартенсита, а также выделением из него при отпуске огромного количества мельчайших карбидов легирующих элементов: Cr, W, Ti. Этот эффект называется дисперсионным или вторичным твердением.

Маркировка легированной стали.

Для маркировки легированной стали принята буквенно-цифровая форма, в которой каждому легирующему элементу присвоена своя буква, а цифра, которая следует за этой буквой показывает среднее содержание этого элемента в процентах. Если содержание элемента близко к единице, то никакой цифры не ставится.

Условно любую марку модно представить как четыре отдельные части.

1. Она может быть или не быть, обычно это буквы. Первая часть показывает на назначение стали: А – автоматная, Ш – шарикоподшипниковая, Р – режущая (быстрорежущая).

2. Здесь всегда находятся цифры, показывающие содержание в стали углерода.

10, 20, 40 – в сотых долях процента (любая сталь, кроме инструментальной). Если стоит одна цифра 2-9, то это содержание углерода в десятых долях процента. Если нет цифры, то содержание примерно 1%.

3. Обозначение легирующих элементов и их количество.

А – азот (N), Б – ниобий (Nb), В – вольфрам (W), Г – марганец (Mn), Д – медь (Cu),

Е – селен Se), К – кобальт (Co), М – молибден (Mo), Н – никель (Ni), П – фосфор ( P), Р – бор (B), С – кремний (Si), Т – титан (Ti), Х – хром (Cr), Ф – ванадий (V).

Если цифры нет, то содержание легирующих элементов 1%. Любая цифра равна числу процентов. Исключения В – 0,003%, N – 0,02-0,05%, Se – 0,3%. Иногда в маркировке появляется цифра 1: 15Х1МФ – содержание Cr больше 1%, но меньше 2%.

4. Буквенная часть. Буквы в конце марки показывают качество стали или метод ее очистки:

А – более высокое качество, т.е. пониженное содержание вредных примесей (30ХГСА)

Ш – шлаковый переплав, т.е. дополнительная очистка продувкой шлаком.

СШ – синтетическим шлаком.

ВД – вакуумно-дуговой переплав.

Исключения (маркировка для служебного пользования).

1. Шарикоподшипниковые стали: ШХ6, ШХ9, ШХ15. Цифра показывает содержание хрома не в целых, а в десятых долях процента.

2. Режущие стали: Р9, Р18, Р6М5. Цифра после буквы Р показывает содержание не углерода, а вольфрама в целых процентах. Углерода в таких сталях одинаковое количество – 1,2%.

3. Марки для служебного пользования. Эти марки не расшифровывают химический состав, а показывают на завод-изготовитель (Э – электросталь, Д – днепроспецсталь). Вторая буква может быть или не быть: И – исследовательская, П – пробная.

Классификация легированной стали.

Одной общепринятой классификации легированной стали, в настоящий момент, не существует, и поэтому принято разделять легированные стали по нескольким признакам:

1. Классификация по структуре в равновесном состоянии (после медленного охлаждения). Разделяют на 4 группы:

1). Равновесное состояние

Доэвтектоидная

Эвтектоидная

Заэвтектоидная

Ледебуритная (карбидная)

2). По структуре в нормализованном состоянии (после охлаждения на воздухе).

2. Классификация по качеству (по содержанию вредных примесей)

    1. Обыкновенного качества (S – 0,03%, Р – 0,04%)

    2. Качественная сталь (S – 0,025%)

    3. Высококачественная сталь (S – 0,015%)

    4. Особо высококачественная сталь

Качество влияет на прочность, стойкость против разрушения.

3. Классификация по содержанию легирующих элементов.

Малолегированная сталь – до 2,5% легирующих элементов.

Среднелегированная сталь – 2,5-10% легирующих элементов.

Высоколегированная сталь – более 10% легирующих элементов.

Если содержание железа не менее 45%, то – это сталь. Если меньше, то –сплав.

4. Классификация по назначению

Конструкционные стали: детали машин, конструкции, узлы, механизмы.

Инструментальные стали

Стали и сплавы со специальными свойствами.

Конструкционные стали.

Понятие о конструкционной прочности

Под конструкционной прочностью понимают способность всей конструкции длительное время надежно работать в различных условиях эксплуатации без катастрофических разрушений. Конструкционная прочность – это интегральная характеристика, объединяющая в себе несколько групп факторов.

1. Металлургические факторы (природа материала). Сюда относят химический состав, микроструктуру, кристаллическую решетку, наличие дефектов, полиморфных превращений и т.д.

2. Конструктивно-силовые факторы. Сюда относят конструкцию, напряженно-силовое состояние, масштабный фактор, фактор формы и т.д.

3. Внешние факторы. Сюда относят наличие агрессивных сред, электромагнитных полей, абразивного износа, температуру.

Для того, чтобы успешно противостоять всем разрушающим факторам при выборе материала для той или иной детали, необходимо учитывать целый ряд параметров.

Выбор стали для деталей конструкционного назначения.

1. Прочность.

Первой характеристикой, по которой осуществляют выбор стали для той или иной детали, является прочность. Однако прочность конструкции рассчитывается иногда не из предела прочности σВ, а исходя из предела текучести σ0,2, т.к. величина 0,2 – это δ=0,2%, т.е. максимально допустимая деформация. Если деформация будет больше, то искажение формы детали приведет к отказу механизма в результате заклинивания или разрушения. Поэтому при выборе стали под ту или иную деталь прочность оценивается по пределу текучести.

2. Критический диаметр.

Большинство конструкционных деталей при изготовлении подвергается упрочняющей термообработке, при этом свойства стали после термообработки в значительной мере зависят от того, прокалилась ли деталь насквозь или нет. Если деталь массивная и не содержит легирующих элементов, то после закалки сердцевина останется незакаленной. Такие детали будут плохо работать на растяжение, и особенно плохо будут противостоять знакопеременным нагрузкам, т.е. сопротивляться усталости. Поэтому для деталей, работающих на удар или на усталость, всегда ставятся требования сквозной прокаливаемости. Прокаливаемость стали оценивается по критическому диаметру. Критический диаметр – максимальный диаметр, который может закалиться насквозь в заданном охладителе. Таким образом, при выборе марки стали максимальный размер детали в сечении должен быть меньше или равен критическому диаметру.

Для удобства выбора той или иной марки стали для деталей различного размера, применяются специальные таблицы, в которых все стали расставлены исходя из двух параметров – предела текучести после термического улучшения и критического диаметра.

Табл.

3. Хладноломкость.

4. Ударная вязкость. Если детали предназначены для работы при отрицательных температурах, а так же условиях ударного нагружения, т.е. динамических нагрузок, то следующими параметрами, по которым проводится дальнейший выбор стали, являются температура полухрупкости Т50, а так же ударная вязкость аn или вязкость разрушения К. Температура полухрупкости показывает температуру, при которой 50% излома носит вязкий характер, 50% - хрупкий. То есть это границы хладноломкости детали. Зная рабочую температуру, всегда нужно выбирать такую сталь, чтобы граница хладноломкости была на 20-40º С ниже рабочей. Для снижения хладноломкости вводят Ni, Mo. Вязкость стали зависит от размеров зерна: чем мельче зерно, тем выше вязкость. Для повышения вязкости вводят Ni, Mo, Mn, W.

5. Дополнительные факторы. Если по условиям работы детали подвергаются дополнительным видам износа (абразивный износ поверхности, окисление поверхности в агрессивных средах, воздействие повышенных температур), то кроме типовых факторов при выборе марки стали учитываются и дополнительные, и подбираются соответствующие меры для противодействия разрушающим факторам (поверхностная закалка, ХТО, поверхностный наклеп, обдувка дробью, песком).

Низкоуглеродистые цементуемые стали.

Эта группа сталей предназначена для изготовления деталей, обладающих повышенной твердостью, прочностью, износостойкостью поверхности и одновременно вязкой сердцевиной. Количество углерода в этих сталях 0,1-0,25%. Введение дополнительных легирующих элементов необходимо, прежде всего, для повышения прочности сердцевины. Слой цементации 0,6-1,2 мм, температура цементации 950-980º С, выдержка, исходя из скорости цементации, 0,1мм/час. При массовом производстве цементацию проводят в газовых печах, при штучном или мелкосерийном производстве – в твердой среде (засыпают углем). Если цементация проводится в газовой печи, то закалка производится непосредственно при выходе из печи, т.е. без дополнительного нагрева. После цементации все детали подвергаются упрочняющей термообработке, для ответственных деталей – двойная закалка (первая закалка – 850-870º С, вторая закалка – 760-780º С) + низкий отпуск (180-200º С), для неответственных деталей – одна закалка с цементационным нагревом (930-950º С) + низкий отпуск (180-200º С). Иногда вместо первой закалки применяют нормализацию (измельчение зерна, устранение цементитной сетки). Цементируемая сталь содержит Cr, W, Ti – карбидообразующие, Ni, Si, Cu – не карбидообразующие. Карбидообразующие элементы повышают твердость поверхности.

1. Стали с не упрочняемой сердцевиной – ст.10, 15, 20 (простые углеродистые).

2. Стали со слабо упрочняемой сердцевиной – ст. 15Х, 15ХР, 15ХГР.

3. Стали с сильно упрочняемой сердцевиной – ст. 12ХН3А, 20Х2Н4А, 18ХНВА, 18ХГТ, 25ХГТ.

Среднеуглеродистые цементуемые стали.

Детали ответственного назначения работают, как правило, в условиях знакопеременных, ударных нагрузок и поэтому требуют применения сталей, сочетающих такие характеристики как высокая прочность, вязкость, а так же сопротивление усталостному разрушению. Такие характеристики можно получить в среднеуглеродистой стали, т.е. содержащей 0,25-0,55% углерода.

1. Если к такой стали применить полную закалку и низкий отпуск, то можно получить очень высокий предел прочности, но при этом очень маленький запас вязкости. Поэтому чаще всего после закалки такую сталь подвергают высокому отпуску. При этом предел прочности несколько понижается, но зато удается получить максимально высокую вязкость, т.е. получить максимально высокую конструкционную прочность. Сочетание полная закалка (820-850º С) + высокий отпуск (550-650º С) применяется для улучшаемых сталей. Структура после такой закалки – сорбит. Границ зерен не видно. Максимально высокая усталостная прочность достигается только при условии однородной структуры, поэтому в этом случае детали должны иметь сквозную прокаливаемость. Если после закалки в центре детали структура будет перлитная, то такая деталь будет плохо сопротивляться усталости.

2. Но для обеспечения сквозной прокаливаемости требуется иметь максимально высокий критический диаметр, т.е. максимально возможный диаметр, на который прокаливается деталь в данном охладителе. Критический диаметр, т.е. прокаливаемость, зависит от многих факторов. Но главным из них является наличие легирующих элементов (кроме кобальта, легирующие элементы смещают с-образные кривые вправо, увеличивают устойчивость аустенита, уменьшая тем самым критическую скорость охлаждения).

В результате при закалке скорость охлаждения даже массивных деталей становится выше критической, и деталь закаливается насквозь, т.е. основным механизмом влияния легирующих элементов на данную сталь является увеличение прокаливаемости стали.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее