Главная » Все файлы » Просмотр файлов из архивов » Документы » Лекция 9_10 Общие принципы функциональной и структурной организации ЭВМ

Лекция 9_10 Общие принципы функциональной и структурной организации ЭВМ (Материалы по ВМСС), страница 3

2015-08-02СтудИзба

Описание файла

Файл "Лекция 9_10 Общие принципы функциональной и структурной организации ЭВМ" внутри архива находится в следующих папках: DVCC, Лекции, Лекция 9_11. Документ из архива "Материалы по ВМСС", который расположен в категории "". Всё это находится в предмете "вычислительные машины, системы и сети (вмсис)" из 6 семестр, которые можно найти в файловом архиве НИУ «МЭИ» . Не смотря на прямую связь этого архива с НИУ «МЭИ» , его также можно найти и в других разделах. Архив можно найти в разделе "остальное", в предмете "вмсс" в общих файлах.

Онлайн просмотр документа "Лекция 9_10 Общие принципы функциональной и структурной организации ЭВМ"

Текст 3 страницы из документа "Лекция 9_10 Общие принципы функциональной и структурной организации ЭВМ"

Процессор может обращаться к основной памяти, используя только абсолютные адреса.

Каждая строка таблицы сегментов содержит адрес начала сегмента в реальной памяти. Для каждого сегмента имеется одна строка таблицы.

Таблицу сегментов содержит каждая выполняемая программа.

В дополнение к таблице сегментов для динамической трансляции адреса используется специальный управляющий регистр, называемый регистром начала таблицы сегментов (РНТС или STOR (segment table origin register)). В этот регистр занесен адрес таблицы сегментов выполняемой в данный момент программы.

На рис.9 изображено выполнение программы D. В РНТС находится адрес таблицы сегментов этой программы. Если программа В прервет выполнение программы D, то в РНТС будет занесен начальный адрес таблицы сегментов программы В.

Допустим, для выполняемой программы D начальный адрес таблицы сегментов 68000. В реальной вычислительной машине все действия выполняются в шестнадцатеричной системе счисления, мы же проведем вычисления для простоты в десятичной системе счисления.

Рис. 9. Технология динамической трансляции адресов

Для обращения к адресу 15000 сегмента 1 производятся следующие действия:

• РНТС указывает на начало таблицы сегментов программы D - 6800;

• номер сегмента в относительном адресе используется как индекс при обращении к таблице сегментов. В данном примере обращение производится к 1-й строке;

• адрес, хранимый в выбранной строке таблицы сегментов, есть адрес начала сегмента в реальной памяти. Смещение в относительном адресе добавляется к начальному адресу, и результат является адресом в реальной памяти: 15000+75000=90000. Для относительного адреса (сегмент 3, смещение 13000) будет получен абсолютный адрес 218000.

При ДТА такое определение адресов ведется в процессе выполнения каждой команды.

Если операционной системе понадобится переместить исполняемую программу в другую часть памяти (например, чтобы исключить фрагментацию), сначала надо будет переслать команды и данные сегмента. Затем строку таблицы сегментов для данного сегмента нужно изменить так, чтобы она содержала новый адрес, и выполнение программы может быть продолжено. Это дает возможность динамического управления реальной памятью в процессе выполнения программы.

Использованием сегментации программ достигается уменьшение фрагментации основной памяти, но полностью фрагментация не устраняется - остаются фрагменты, длина которых меньше длины сегмента программы.

Если сегменты разделить на одну или несколько единиц, называемых страницами, которые имеют фиксированный размер, то поскольку размер страницы достаточно мал по сравнению с обычным размером сегментов, неиспользуемые фрагменты ОП значительно сокращаются в объеме - будет иметь место так называемая фрагментация внутри страниц. Следовательно, потери все-таки останутся, но они будут существенно меньше.

Сегментно-страничная организация добавляет еще один уровень в структуре адресного пространства программы. Теперь адресное пространство программы дробится на сегменты, внутри сегментов - на страницы и адреса внутри страниц. Структура адреса: (s, p, i) - рис.10, где s - имя сегмента

Рис.10. Адресная структура при сегментно-страничной организации памяти внутри адресного пространства программы; p - имя страницы; i - адрес внутри страницы.

Формирование сегментно-страничной структуры выполняется автоматически с помощью операционной системы.

Для динамической трансляции адресов (ДТА) каждому сегменту необходимы одна таблица сегментов и несколько таблиц страниц (рис.4.11).

ДTА будет выполняться следующим образом:

• регистр начала таблицы сегментов содержит начальный адрес таблицы сегментов выполняемой программы 28000;

• номер сегмента в относительном адресе используется как индекс для обращения к записи таблиц сегментов. Эта запись идентифицирует начало таблицы страницы (реальный адрес) 30000;

• номер страницы в относительном адресе используется как индекс для обраще0ния к записи таблицы страниц. Эта запись идентифицирует начало страничного блока, содержащего эту страницу - 128000;

• смещение в относительном адресе и местоположение страничного блока объединяются вместе, формируя абсолютный адрес 129564. В реальной системе адрес страничного блока и смещение связываются, т.е. соединяются вместе для образования абсолютного адреса. Все преимущества динамического перемещения с использованием сегментации и страничной организации достигаются благодаря аппаратуре и программному обеспечению, а не пользователям системы. Специальные программы во время загрузки разбивают адресное пространство программы на сегменты и страницы, строят таблицы сегментов и страниц. Средства ДТА автоматически транслируют адрес в процессе выполнения программы.

4.2. Виртуальная память

Имея иерархическую структуру запоминающих устройств, на реальном объеме памяти, значительно меньшем максимального, можно имитировать работу с максимальной памятью. В этом случае программист работает так, как будто ему предоставлена реальная память максимально допустимого для данной ЭВМ объема, хотя имеющаяся реальная память значительно меньше по объему. Такой режим работы называется режимом виртуальной памяти.

Рис. 11. Структурная схема формирования абсолютного адреса при сегментно-страничной организации ОП



Рис. 12. Структура виртуальной памяти

Теоретически доступная пользователю ОП, объем которой определяется только разрядностью адресной части команды и которая не существует в действительности, называется виртуальной памятью.

Виртуальная память имеет сегментно-страничную организацию и реализована в иерархической системе памяти ЭВМ. Часть ее размещается в страничных блоках основной памяти, а часть - в ячейках внешней страничной памяти (slot). Внешняя страничная память является частью внешней памяти. Ячейка (слот) - это записываемая область во внешней страничной памяти (например, на жестком магнитном диске). Она того же размера, что и страница.

Вычислительная система с 24-разрядным адресом может иметь адресное пространство в 16 777 216 байт (16 Мбайт), с 32-разрядным адресом - 4 Гбайт. Структура такой памяти показана на рис.12.

Все программные страницы физически располагаются в ячейках внешней страничной памяти. Виртуальная же память существует только как продукт деятельности операционной системы (функционирующей на основе совместного использования внешней и страничной памяти).

Загрузить программу в виртуальную память - значит переписать несколько программных страниц из внешней страничной памяти в основную память. Если в процессе выполнения программы А система обнаружит, что требуемой страницы нет в реальной памяти, она должна переслать копию этой страницы из внешней страничной памяти в реальную память. Этот механизм называется принудительным страничным обменом.

При расшифровке виртуального адреса номер сегмента с помощью таблицы сегментов соотносится с адресом таблицы страниц. Таблица страниц содержит номер страницы и адрес страничного блока. В виртуальном режиме к таблице страниц добавляется еще одна колонка, содержащая бит недоступности. Нулевое состояние этого бита означает, что соответствующая страница загружена в реальную память. Единичное состояние означает, что страница недоступна, ее надо переписать в реальную память из внешней. Местоположение страницы во внешней памяти указывается в таблице внешних страниц.

4.3. Система прерываний ЭВМ

Современная ЭВМ представляет собой комплекс автономных устройств, каждое из которых выполняет свои функции под управлением местного устройства управления независимо от других устройств машины. Включает устройство в работу центральный процессор. Он передает устройству команду и все необходимые для ее исполнения параметры. После начала работы устройства центральный процессор отключается от него и переходит к обслуживанию других устройств или к выполнению других функций.

Можно считать, что центральный процессор переключает свое внимание с устройства на устройство и с функции на функцию. На что именно обращено внимание ЦП в каждый данный момент, определяется выполняемой им программой.

Во время работы в ЦП поступает (и вырабатывается в нем самом) большое количество различных сигналов. Сигналы, которые выполняемая в ЦП программа способна воспринять, обработать и учесть, составляют поле зрения ЦП или другими словами - входят в зону его внимания.

Например, если процессором исполняется программа сложения двух двойных слов, которая анализирует регистр флагов ЦП, то в “поле ее зрения” находятся флаги микропроцессора, определяющие знаки исходных данных и результата, наличие переноса из тетрады или байта, переполнение разрядной сетки и др. Такая программа готова реагировать на любой из сигналов, находящихся в ее зоне внимания (а поскольку именно программа управляет работой ЦП, то она определяет и “зону внимания” центрального процессора). Но если во время выполнения такой программы нажать какую-либо клавишу, то эта программа “не заметит” сигнала от этой клавиши, так как он не входит в ее “поле зрения”.

Для того чтобы ЦП, выполняя свою работу, имел возможность реагировать на события, происходящие вне его зоны внимания, наступления которых он “не ожидает”, существует система прерываний ЭВМ. При отсутствии системы прерываний все заслуживающие внимания события должны находиться в поле зрения процессора, что сильно усложняет программы и требует большой их избыточности. Кроме того, поскольку момент наступления события заранее не известен, процессор в ожидании какого-либо события может находиться длительное время, и чтобы не пропустить его появления, ЦП не может “отвлекаться” на выполнение какой-либо другой работы. Такой режим работы (режим сканирования ожидаемого события) связан с большими потерями времени ЦП на ожидание.

Кроме сокращения потерь на ожидание, режим прерываний позволяет организовать выполнение такой работы, которую без него реализовать просто невозможно. Например, при появлении неисправностей, нештатных ситуаций режим прерываний позволяет организовать работу по диагностике и автоматическому восстановлению в момент возникновения нештатной ситуации, прервав выполнение основной работы таким образом, чтобы сохранить полученные к этому времени правильные результаты. Тогда как без режима прерываний обратить внимание на наличие неисправности система могла только после окончания выполняемой работы (или ее этапа) и получения неправильного результата.

Таким образом, система прерываний позволяет микропроцессору выполнять основную работу, не отвлекаясь на проверку состояния сложных систем при отсутствии такой необходимости, или прервать выполняемую работу и переключиться на анализ возникшей ситуации сразу после ее появления.

Помимо требующих внимания нештатных ситуаций, которые могут возникнуть при работе микропроцессорной системы, процессору полезно уметь “переключать внимание” и на различные виды работ, одновременно выполняемые в системе. Поскольку управление работой системы осуществляется программой, этот вид прерываний должен формироваться программным путем.

В зависимости от места нахождения источника прерываний они могут быть разделены на внутренние (программные и аппаратурные) и внешние прерывания (поступающие в ЭВМ от внешних источников, например, от клавиатуры или модема).

Принцип действия системы прерываний заключается в следующем:

при выполнении программы после каждого рабочего такта микропроцессора изменяются содержимое регистров, счетчиков, состояние отдельных управляющих триггеров, т.е. изменяется состояние процессора. Информация о состоянии процессора лежит в основе многих процедур управления вычислительным процессом. Не вся информация одинаково актуальна, есть существенные элементы, без которых невозможно продолжение работы. Эта информация должна сохраняться при каждом “переключении внимания процессора”.

Совокупность значений наиболее существенных информационных элементов называется вектором состояния или словом состояния процессора (в некоторых случаях она называется словом состояния программы).

Вектор состояния в каждый момент времени должен содержать информацию, достаточную для продолжения выполнения программы или повторного пуска ее с точки, соответствующей моменту формирования данного вектора.

Вектор состояния формируется в соответствующем регистре процессора или в группе регистров, которые могут использоваться и для других целей.

Наборы информационных элементов, образующих векторы состояния, отличаются у ЭВМ разных типов. В IBM PC вектор состояния включает содержимое счетчика команд, сегментных регистров, регистра флагов и аккумулятора (регистра АХ).

При возникновении события, требующего немедленной реакции со стороны машины, ЦП прекращает обработку текущей программы и переходит к выполнению другой программы, специально предназначенной для данного события, по завершении которой возвращается к выполнению отложенной программы. Такой режим работы называется прерыванием.

Каждое событие, требующее прерывания, сопровождается специальным сигналом, который называется запросом прерывания. Программа, затребованная запросом прерывания, называется обработчиком прерывания.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
426
Средний доход
с одного платного файла
Обучение Подробнее