Diplom (Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "Diplom"

Текст 3 страницы из документа "Diplom"

, ( , ) (18)

Полагая здесь , мы найдем для чисто вещественное значение , для которого мнимая часть обращается в нуль в начале координат.

Чтобы получить общее решение, мы должны добавить к правой части произвольное мнимое число :

, . (19)

Отделим в (18) вещественную и мнимую части, так как вещественная

часть даст нам интеграл Пуассона для и мнимая же часть доставляет выражение через .

Для единичного круга , имеет вид:

, (20)

где , - представляет значение вещественной части искомой функции в точке .

б) Интегральная формула Пуассона.

Задача Дирихле об определении значений гармонической функции внутри круга, если известны ее значения на границе, решается, как известно, интегралом Пуассона:

, (21)

где - полярные координаты точки, где ищется значение решения; - радиус окружности и - функция полярного угла , дающая граничные значения [9].

М

ожно проверить разложением в ряд Тейлора, что

,

( , )

Поэтому представима рядом:

(22)

где и - коэффициенты Фурье :

; ;

В центре окружности при мы получаем:

(23)

Равенство (23) – теорема Гаусса о том, что значение гармонической функции в центре окружности есть среднее арифметическое ее значений на самой окружности.

в) Интеграл Пуассона для внешности круга.

Найти функцию, гармоническую и ограниченную вне окружности и принимающую на самой окружности заданные значения [9]:

, ( ).

Покажем, что искомую функцию может быть представлена интегралом типа Пуассрна, который может быть получен из (1).

Пусть , а ,

Функция , гармоническая вне окружности , перейдет в функцию , гармоническую внутри круга радиуса , принимающую на его границе значения

.

По формуле (1) она при представима интегралом Пуассона:

.

Если в этом равенстве подставить вместо и их выражения через и и заменить переменную интегрирования, положив , то мы получим формулу Пуассона для внешности окружности:

, (24)

решающую поставленную задачу. Она отличается от (1) только тем, что в ней и переменились местами, так что ядро интеграла (4) отличается от ядра интеграла Пуассона (1) только знаком.

Разложение искомой функции в тригонометрический ряд, подобный ряду (22), представляющей ее вне окружности:

. (25)

Если в (25) , то получим теорему Гаусса для внешности окружности:

, (26)

т.е. значение гармонической функции на бесконечности есть среднее арифметическое значений на граничной окружности.

г) Задача Дирихле-Пуассона для полуплоскости.

Аналитический аппарат, позволяющий гармоническую функцию внутри верхней полуплоскости по известным граничным значениям ее вещественной оси, можно получить из интеграла Пуассона путем преобразования круга плоскости на верхнюю полуплоскость при помощи функции

Граничные значения на окружности перейдут в граничные значения на вещественной оси и мы получим искомую формулу в виде [1]:

, ( ) (27)

П

ри неточных графических расчетах формулу (27) удобнее употреблять в ином виде, взяв за переменную интегрирования не , а угол , который образует прямая с перпендикуляром к оси , опущенным из точки , имеем:

,

и окончательно имеем:

. (28)

д) Задача Дирихле для кругового кольца.

Граничные значения гармонической функции на окружности кольца мы будем предполагать заданными в форме функций от полярного угла и обозначим их соответственно через и .

Сопряженная с гармоническая функция будет вообще говоря, не однозначной, и фкп будет состоять из двух слагаемых: однозначной составляющей, могущей быть разложенной в ряд Лорана в кольце, и логарифм с вещественным коэффициентом:

, . (29)

Отделяя вещественную и мнимую части, мы получим решение поставленной задачи – задачи Дирихле в кольце, но здесь суммируется не так просто.

Существует более компактная и эффективная формула – интегральная формула Вилля для кругового кольца [2], [3].

§3. Интегральная формула Анри Вилля – проблема Дирихле

для кругового кольца (1912).

Пусть в плоскости комплексного переменного дано круговое кольцо , ограниченное окружностями

, ,

где заданное положительное число <1.

Требуется найти регулярную и однозначную внутри области функцию , если известны значения ее вещественной части на границах кольца.

Для случая круга аналогичная задача решается известной формулой Шварца Г. (1869г) (п.1)

, ( , ),

где с – действительная переменная.

Здесь предполагается, что радиус круга равен 1, а положение точки на окружности определяется аргументом этой точки, так что представляет значение вещественной части искомой функции в точке .

Нашей задачей является переход от круга к кольцу и построение формулы, аналогичной формуле (1).

Обозначим через и значения вещественной части искомой функции в точках с аргументом на внешней, соответственно внутренней, границе .

Основной нашей целью является выяснение того, как скажется на формуле переход от односвязной области к двусвязной.

Величина

,

где интеграл справа берется по окружности радиуса ( ) с центром в точке , очевидно, не зависит от . Тем же свойством обладает и вещественная часть написанного интеграла.

Отсюда, приближая вначале к 1, а замечая, что в интеграле можно

сделать требуемые предельные переходы, получим:

. (30)

Это условие, таким образом, необходимо для разрешимости поставленной нами проблемы, и мы должны предположить, что она выполняется.

Искомая функция может быть разложена в ряд Лорана

. (31)

Мы найдем разложения обеих функций , в ряды Фурье. Из этих разложений получаются коэффициенты в виде некоторых интегралов и подставляя в (31) получим известную формулу Анри Вилля для кругового кольца в форме Н.И.Ахиезера [7].

, (32)

где с – произвольная вещественная константа, - произвольное положительное число, а чисто мнимое число находится с помощью равенства

, (33)

, и, наконец - функция Вейерштрасса.

Формула (32), принадлежащая Вилли, представляет собой аналог формулы Шварца для кругового кольца; она приведена в иной форме, например в монографии Н.Ахиезера [7].

а) Преобразование интегральной формулы А.Вилля (32).

Формула Анри Вилля в форме Н.И.Ахиезера [7].

, (34)

где из (33) следует, что , где - положительное действительное число, можно придать более компактную форму, если несколько преобразуем (32), учитывая (33) и замечая, что можно выразить через с учетом граничных свойств:

,

, ; (35)

, .

Таким образом, интегральная формула (32) с учетом (34) и (35) примет следующий окончательный вид:

, (36)

где с – постоянная.

Формулу (36) можно назвать канонической, компактной и контурной интегральной формулой Анри Вилля для кругового кольца.

б) Функции Вейерштрасса.

В виду важности трех функций Вейерштрасса , и для практического применения и простоты реализации на ЭВМ мы рассмотрим следующие варианты представления данных функций [19] - [22]:

1. (37)

или

(38)

2. ,

: , (39)

,

д

ля действительных нулей полинома возможны следующие частные случаи:

: ,

,

.

(40)

3. ,

,

где , , .

4. (41)

где ;

; ; .

5. , т.е.

, (44)

где ( ),

, (45)

или

6. (46)

(47)

– эллиптическая функция Вейерштрасса .

Функция Вейерштрасса , (48)

так что .

Функция Вейерштрасса определяется с помощью равенства

.

Из этой формулы следует и

где путь интегрирования не проходит ни через одну вершину сетки периодов, отличную от точки .

§4. О некоторых применениях теории конформного

отображения к краевым задачам.

а) Об структурном классе интегральных представлений.

Как известно, интегральное представление аналитических функций ИПАФ давно служит:

  • как удобный аппарат для обозримого представления аналитических решений дифференциальных уравнений. Например, специальные функции – функции Бесселя, Эйри, Лежандра, Лагера, Эрмита, многочлены Чебышева, гипергеометрическая функция и многие другие – являются решениями линейных дифференциальных уравнений с аналитическими коэффициентами;

  • для исследования ассимптотики этих решений и их аналитического продолжения;

  • несколько позже – нашли применения для решения граничных задач теории аналитических функций и сингулярных уравнений;

  • исследование внутренних и граничных свойств аналитических функций различных классов, а также для решения других, самых разнообразных вопросов математического анализа (интегралы Коши, Пуассона, Шварца, Чизотти и т.п.)

Обширный класс интегральных представлений аналитических функций, используемых для получения и исследования аналитических решений дифференциальных уравнений (АРДУ), описывается общей формулой:

(49)

где - ядро типа Шварца, зависящее от связности данной области, - аналитическая функция, регулярная и однозначная в (n+1) – связной канонической круговой области , - заданная плотность – вещественная функция в точках , контура круговой области .

Вещественные и комплексные таковы, что :

, , ( , ). (50)

По заданным интегральным представлениям (49) можно найти аналитическое решение дифференциальных уравнений (АРДУ) для произвольных областей плоскости , ограниченную замкнутыми кривыми типа Ляпунова. (Существует касательная в каждой точке , , , - угол между касательными; кривая замкнута и ограничена).

Используя интегральные представления Чизотти, мы получим решение задачи Дирихле для области и интегральные формулы Пуассона для :

(51)

. (52)

Из (52) получим:

(53)

;

.

г де

,

(54)

,

,

, , , [4];

В случае круга:

(55)

,

.

К руговое кольцо:

(56)

;

,

где - функция Вейерштрасса, , , , - некоторые постоянные, определяемые из нормировки отображений функций , , - периоды функции .

Формулу (53) назовем интегральными формулами Дирихле-Чизотти для областей , или решениями задачи Дирихле для рассматриваемой области или интегральными формулами Пуассона для соответствующих канонических областей .

б) О решении задачи Дирихле методом Чизотти

для многосвязных областей

Как мы знаем, решение задачи Дирихле для произвольных многосвязных областей найти явное и эффективное решение трудоемкая или невозможная проблема.

Поэтому более эффективное нахождение краевых задач представляет немаловажный интерес в теории аналитических и гармонических функций для многосвязных областей ( неконцентрического кругового кольца, внешности двух кругов и для конечных двух-трехсвязных областей и т.д.) используя интегральную формулу Чизотти для заданных соответствующих областей.

1. Построим функцию , дающую конформное отображение на , где , ; ( ):

, (57)

где и - постоянные, определяется однозначно по формуле Шварца для соответствующих заданных областей.

Пусть - регулярная функция в . Так как подинтегральное выражение (57) представимо по формуле Эйлера в следующем виде:

, то

(58)

С учетом (58) интегральная формула (57) примет вид:

(59)

;

.

где и - постоянные (к=1,2).

Формулу (59) можно назвать интегральной формулой Дирихле-Чизотти для конечных многосвязных областей, т.к. формула (57) есть интегральная формула Чизотти для конечных многосвязных круговых областей.

Если найден и от известного интегрального выражения ):

, т.е.

; (60)

,

то мы получим решение граничной задачи Пуассона для канонических (конечных, бесконечных) областей .

2. Если область - концентрическое круговое кольцо, то

, (61)

где - заданная функция - функция Вейерштрасса, то мы имеем интегральную формулу Вилля-Шварца (61) в компактной контурной форме.

Из (61) получим:

, (62)

, (63)

где , , , .

Формулы (62) и (63) называются интегральными формулами Вилля-Пуассона. Подставляя (62) и (63) в исходную интегральную (59) мы получим интегральную формулу Дирихле через интеграл Чизотти. Формулы (62) и (63) можно назвать интегральными формулами Дирихле-Чизотти для конечных двусвязных областей.

в) Интегральная формула Чизотти для заданных областей – решение

задачи Дирихле для соответствующих областей.

Если известны интегральные формулы Шварца для круговых областей , дающие аналитической в функции через нормальной производной ее действительной части на границе области и интегральные представления Чизотти для круговых областей, дающие выражение функции , реализующей конформное отображение области на ограниченную гладкой кривой (51), (52), то поэтому интегральную формулу, дающую конформное отображение на через нормальную (касательную) производную ее действительной (мнимой) части на границе , естественно назвать интегральной формулой Дини-Шварца-Чизотти для заданных областей.

Можно рассмотреть интегральные формулы Дини-Шварца для многосвязных областей и их применение к решению краевых задач типа Дирихле.

Решение задачи Неймана сводится к решению задачи Дирихле сопряженной гармонической функции.

Учитывая, что задача конформного отображения многосвязной области на каноническую область и задача Дирихле для той же области эквивалентны (49), используем интегральный метод Чизотти для соответствующих областей (50), (51).

Применяя ИПАФ типа Шварца регулярной и однозначной в , найдем решение задачи Дирихле, как представляющее однозначную и аналитическую (гармоническую) в произвольной многосвязной области функцию

(64)

удовлетворяющую в уравнению

(65)

и граничному условию

, , (66)

где .

Решение задачи (65) и (66) в заданных произвольных областей имеет следующий вид:

(67)

или после соответствующих преобразований получим (§4 п."б"):

;

, (68)

где и постоянные, определяемые нормировкой функции , - угол наклона касательной в точке , соответствующей при отображении .

Пусть теперь - каноническая область (круг, концентрическое круговое кольцо, внешность двух кругов, …), а - соответствующая область, ограниченная контуром .

Построим функцию , дающую конформное отображение на . Причем будем для простоты считать, что , .

В силу конформности отображения всюду в функция равна

; на (69)

,

Следовательно, функцию можно представить следующими интегральными формулами типа Шварца:

, , ( );

, , ( ; (70)

, ,

где - ядро Шварца для круга;

- функция Вейерштрасса;

- ядро Александра-Сорокина для неконцентрического кругового кольца;

- ядро для внешности двух окружностей;

- ядро для симметричных и равных (неравных) окружностей.

Интегральное представление (68) назовем интегральной формулой для решения задачи типа Дирихле для рассмотренных областей .

Для нахождения гармонической (или ) в произвольной односвязной области функций, достаточно знать или обычные классические интегральные формулы Пуассона для круга :

или

.

2. Для нахождения решения задачи Дирихле в произвольной двусвязной ограниченной (конечной) области через - решение кругового кольца надо пользоваться контурной компактной формулой Вилля, т.е. и - интегральные формулы Пуассона для кругового кольца ( ):

(71)

,

.

Таким образом, аналогичными примерами можно найти и для остальных рассмотренных областей решения задачи Дирихле ( ) через и .

§5. Об интегральных представлениях Пуассона-Дирихле

для заданных областей.

Пусть , , - нормированная функция дает конформное отображение канонической области плоскости на соответствующую область плоскости . Простоты ради будем считать, что .

В силу конформности отображения мы имеем, что всюду в и, как легко видеть реальная (действительная) часть голоморфной в функции

равна на окружностях :

, (72)

где при , ( ), (73)

, - угол наклона касательной к в точках , соответствующих при отображении . Область ограничена гладкими кривыми типа Ляпунова , а в каждой точке контура области плоскости известен угол наклона .

Здесь вещественные числа и комплексные числа , таковы для конечной - связной области, что

, , ( , ). (74)

При этом будем считать, что - внешняя, а - внутренние кривые, и будем считать, что , [5].


И

з существования отображающей функции следует, что функция регулярная, однозначная и эффективная в канонической области согласно равенству (64), представляется по интегральной формуле Шварца [5] в форме Александрова-Сорокина в следующем виде:

. (75)

Функция регулярна и действительные части на граничных компонентах принимают непрерывные значения , определяемые равенством (65), а - ядро определяется следующими формулами [5]:

, (76)

, (77)

1, при

-1, при , с – вещественное число.

Если мы в (67) отделим вещественную и мнимую части, то мы получим две интегральные формулы Пуассона для - связных круговых областей ; что мы и делаем, следуя вычислениям Александрова-Сорокина [5], т.е. решаем задачу Дирихле-Пуассона: об определении значений гармонической функции внутри канонической области , если известны ее значения на границах , - функция полярного аргумента, дающая граничные значения .

, (78)

, (79)

где , , .

Рассмотрим некоторые частные задачи Дирихле-Пуассона для .

Следствие 1. Если в формулах (72) и (73) положить , то мы получим формулу Пуассона – интеграл Пуассона для круга [ ]:

, ( ) (80)

, ( ) (81)

Следствие 2. Если в формулах (72) и (73) положить , то мы получим две интегральные формулы Пуассона для кругового кольца:

, (82)

, (83)

где (74) и (75) – реальные и мнимые части компактной интегральной формулы Вилля-Шварца для кругового кольца [2], - функция Вейерштрасса, - угол наклона касательной к в точке , , - периоды, с – произвольная постоянная, ( ).

Так как функция ) представляется быстро сходящимися рядами, то формулы (74) и (75) можно с успехом использовать для приближенного решения соответствующих граничных задач.

Следствие 3. Если в формулах (70) и (71) - задана нормальная (касательная) производная, то мы получим две интегральные формулы Дини-Шварца для соответствующих областей, т.е. получим непосредственное обобщение интеграла Дини, дающее решение граничной задачи Неймана для заданных рассмотренных областей.

В случае единичного круга эта формула имеет вид[1, 9]:

, (84)

где действительная функция при , под понимается дифференцирование по направлению внутренней нормали, а с – произвольная постоянная. Формула (76) имеет место при условии, что

. (85)

Условие (77) – необходимое и достаточное условие дл разрешимости рассматриваемой граничной задачи и при его выполнении искомая однозначная аналитическая функция определяется с точностью до произвольного комплексного постоянного слагаемого.

А из (76) следуют формулы Дини:

(86)

,

.

В случае кругового кольца , имеем

, (87)

г

(88)

де ,

, .

Формула (80) – формула Дини-Шварца или интегральная формула Дини-Шварца для кругового кольца.

Если в равенстве (79) отделить действительные и мнимые части, то мы получим непосредственное обобщение интегральной формулы Дини, дающее решение граничной задачи Неймана для кругового кольца:

(89)

,

,

где , , .

Формулу (81) можно назвать формулой Дини-Вилля для кругового кольца.

Аналогично можно найти интегральные формулы Пуассона, Шварца-Дини для любых ( ) связных (конечных и бесконечных) областей, используя формулы (70) и (71).

§6. Интегральная формула Чизотти-Пуассона-Дирихле

для конечных трехсвязных областей.

Ф

ормула Чизотти для многосвязных круговых областей дает выражение функции, реализующей конформное отображение области ограниченной окружностями , ( , 0, 1, 2 и ) на многосвязную область плоскости , ограниченную гладкими кривыми .

Если в каждой точке , где , контура области плоскости известен угол наклона касательной к , где , - внешняя, - внутренние, , .

Построим функцию дающую конформное отображение области на , где . тогда голоморфна в и действительная часть голоморфной функции равна на окружности , т.е.

, , (90)

где - угол наклона касательной к в точках соответствующих при отображении функцией .

Из существования отображающей функции следует, что функция в области согласно (82) можно представить по формуле Шварца для многосвязных областей. Функция регулярна и однозначна в области и ее действительная часть на принимает непрерывные значения . Тогда с помощью формулы Шварца, с учетом (82) функция принимает вид:

, (91)

где , , , - заданная плотность по граничному условию (81), - ядро, определяемое следующими формулами:

, где:

;

(92)

;

;

; ; .

; ,

где ядра, зависящие от натурального параметра.

Определив , мы сможем из (82) найти :

, (93)

где А – произвольная постоянная, - определяется равенством (83). Отсюда интегрируя обе части (85) получим:

, (94)

(86) – есть формула Чизотти для конечных трехсвязных областей.

Итак, интегральная формула Чизотти для конечных трехсвязных областей имеет вид:

где А и В – постоянные, определяемые из нормировки функций: , , >0.

Если , то и - две интегральные формулы Пуассона для заданных трехсвязных областей.

Если , то

(95)

,

где , (Шварц, 1869),

, (Вилля, 1921), (96)

, (Александров-Сорокин, 1972),

Формулу (87) назовем интегральными формулами Дирихле-Чизотти для рассмотренных областей , а формулы (88) – интегралами типа Шварца, а реальные и мнимые части от функции - интегральными формулами типа Пуассона.

Аналогичные формулы мы получим и для неконцентрического кругового кольца, и для внешности и окружностей [4].

Рассмотренные выше формулы (86) – (88) – очень эффективны, когда - правильные многоугольники (формулы Кристоффеля-Шварца-Дирихле для рассмотренных областей).

Замечание 1. Так как заданные функции - являются быстро сходящимися рядами (см. §3, формулы (37) – (48)), то все рассмотренные интегральные формулы можно с успехом использовать и для приближенного решения соответствующих граничных задач.

Замечание 2. Так как решение задачи Неймана сводится к решению задачи Дирихле для сопряженной однозначной гармонической функции, мы рассмотрели только задачу Дирихле.

Замечание 3. Классические краевые задачи являются частными случаями задачи:

Найти регулярное в области решения эллиптического уравнения

, (97)

удовлетворяющие на границе условию

, (98)

где - производная по некоторому направлению, а - заданные непрерывные на функции, причем всюду на и

  1. при , - задача Дирихле;

  2. при , - задача с косой производной, которая переходит в задачу Неймана, если направление совпадет с направлением по нормали.

Литература.

  1. М.А.Лаврентьев, В.В.Шабат. "Методы теории функции комплексного переменного". М. 1965.

  2. Х.Т.Тлехугов. "Формула Чизотти для кругового кольца". Труды ВЦАН Груз. ССР 1973. т.XII вып.I, стр.218-222.

  3. Д.А.Квеселава, Х.Т.Тлехугов. "Формула Чизотти для многосвязных круговых областей". ВЦАН Груз. ССР 1977. т.XVI, вып.I, стр.256-260.

  4. Х.Т.Тлехугов. "Формула Чизотти для (n+1) – связных бесконечных областей". Труды ВЦАН Груз. ССР 1980. т.XX вып.I, стр.219-224.

  5. И.А.Александров, А.С.Сорокин. "Задача Шварца для многосвязных областей". СМЖ. 1972. т.XIII. 5., стр.970-1001.

  6. А.В.Бицадзе. "Основы ТАФКП". М. 1984.

  7. Н.И.Ахиезер. "Элементы теории эллиптических функций". М. 1970, стр.9-34; 179-190; 224-229.

  8. В.И.Смирнов. "Курс высшей математики". т.3 часть вторая, изд. 6. М. 1956, стр.182-184.

  9. Л.В.Канторович, Крылов. "Приближенные методы высшего анализа". М.-Л., 1962, стр.584-645.

  10. Ф.Д.Гахов. "Краевые задачи". М. 1977. изд. 3.

  11. И.И.Привалов. "Граничные свойства аналитических функций". М.-Л. 1950.

  12. Математическая энциклопедия. т.1-5. 1977-85.

  13. В.А.Змарович. "О структурных формулах теории специальных классов АФ". Известия Киевского политехнического института. т.15, стр.126-148.

  14. Х.Т.Тлехугов. "О применении формулы Чизотти к приближенному отображению с особой нормировкой". Сообщения АН Груз. ССР, 1981. т.101. 1., стр.21-24.

  15. Х.Т.Тлехугов. "О приближенном конформном отображении методом растяжения". Известия АН Азер. ССР, 1977. 5., стр.37-40.

  16. Х.Т.Тлехугов. "Применение формулы Чизотти к приближенному отображению". Сообщения АН Груз. ССР, 1974. т.73. 3., стр538-540.

  17. Н.И.Мусхелишвили, Д.З.Авазошвили. "Сингулярные и интегральные уравнения". М. 1956.

  18. С.Г.Михлин. "Интегральные уравнения". ОГИЗ. М.-Л. 1947.

  19. Бейтмен и Эрдейн. "Высшие трансцендентные функции". М. 1967. стр.294.

  20. Градштейн, Рыжик. "Таблицы интегралов и произведений". М. 1962. стр.931-935.

  21. М.Абрамович, И.Стиган. "Справочник по специальным функциям". М. "Наука", 1979. стр.442-445.

  22. Е.Янке, Ф.Эмде, Ф.Леш. "Специальные функции". М. 1968. стр.120-143.

  23. Д.А.Квеселова, Х.Т.Тлехугов. "Формула Дини-Шварца для кругового кольца". Труды ВЦ. АН Груз. ССР, т.12. вып.1, 1973, стр.214-219.

  24. Н.И.Мусхелишвили. "Сингулярные интегральные уравнения". М. 1962. стр.245-269.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5192
Авторов
на СтудИзбе
433
Средний доход
с одного платного файла
Обучение Подробнее