Diplom (Использование дифференциальных уравнений в частных производных для моделирования реальных процессов), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Использование дифференциальных уравнений в частных производных для моделирования реальных процессов", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "Diplom"

Текст 4 страницы из документа "Diplom"

(2)

г де ka = mak0 – величина волнового вектора падающего излучения во внешней среде с вещественным показателем преломления ma.

z

r


y

0



x


Рис. 3.1. Сферическая система координат для изучения

дифракции света на шаре.

В дальнейшем в промежуточных формулах всюду будет опущен множитель Е0, который будет внесен в окончательные выражения для полей.

В сферической системе координат, в которой естественно решать данную задачу, уравнения Максвелла (1) имеют вид:

(3)

(4)

(5)

(6)

(7)

(8)

Падающее поле возбуждает в шаре внутреннее поле, а во внешнем пространстве – дифрагированное поле, причем все эти поля должны иметь оду и ту же временную зависимость, т.е. частоту. Произвольное электромагнитное поле будем представлять как суперпозицию двух типов колебаний. Первый тип назовем электрическими колебаниями и будем считать, что у этих колебаний радиальная составляющая магнитного поля во всех точках равна нулю:

(9)

Второй тип – магнитные колебания:

(10)

В случае электрических колебаний из уравнения (6) получим

Это соотношение, очевидно, будет удовлетворено, если предположим, что есть производные от некоторой третьей функции : первая – по , а вторая – по :

Подставляя эти соотношения в формулы (4) и (5) получим

Этим соотношениям можно удовлетворить, если положить где - некоторая новая функция. Тогда найдем . Если теперь вместо функции ввести , то формула (3) получит вид

(11)

тогда как (7) и (8) приводятся к одному и тому же волновому уравнению для функции

(12)

Используя указанные выше соотношения и заменяя в выражении для производные по через производные по r из уравнения (12), получим следующие соотношения:

(13)

которые выражают все составляющие полей для случая через одну функцию - потенциал электрических колебаний. Подставив эти выражения в уравнение (3) – (8), легко убедиться в том, что равенства (13) образуют решение уравнений Максвелла, если U1 является решением волнового уравнения. Аналогично для магнитных колебаний все составляющие полей могут быть выражены через некоторую функцию - потенциал магнитных колебаний.

В общем случае в поле присутствуют колебания обоих типов. Для составляющих полей получим при этом следующие выражения:

(14)

Функции U1 и U2 являются решением волнового уравнения.

(15)

которое будем решать по методу Фурье (значок у U временно опущен, он появится при рассмотрении граничных условий, которые для U1 и U2 различны). В качестве частного решения положим

(16)

Подставляя (16) в (13) и разделяя переменные, получим для f и Y следующие уравнения:

(17)

(18)

Уравнение для Y имеет однозначное и непрерывное решение на всей сфере только для , где n = 0, 1, 2… В этом случае его решением являются сферические функции:

(19)

где а - полином Лежандра. В уравнении (17) сделаем подстановку , тогда для Rn (x) получим следующее уравнение (x = kr):

(20)

Это уравнение Бесселя и его решением являются цилиндрические функции с полуцелым индексом . Таким образом, n-е частное решение уравнения (15) будет

(21)

Из всех цилиндрических функций только бесселевы функции первого рода конечны в нуле. Поэтому только они могут быть использованы для решения внутри шара. Вне шара, в соответствии с принципом излучения, решение должно иметь характер расходящейся волны. Так как временной множитель выбран в виде , то только ханкелевская функция второго рода дает волну, расходящуюся из источника дифракции . Обозначим

(22)

тогда частное решение, очевидно, следует представить в виде суперпозиции частных решений с неопределенными коэффициентами, которые вычисляются из граничных условий. Граничные условия для потенциалов U1 и U2 на шаре получаются из требования непрерывности тангенциальных ( ) составляющих полей. Из (14) видно, что для этого необходимо, чтобы на поверхности шара были непрерывны следующие величины: , т.е.

(23)

(24)

где Ua – потенциал дифрагированного поля, а Ui – внутреннего.

Представим теперь электрический и магнитный потенциалы падающей волны также в виде рядов по , используя известное разложение плоской волны по полиномам Лежандра:

(25)

Тогда после преобразований получим:

(26)

Потенциалы и должны иметь такую же угловую зависимость, как и потенциалы падающего поля. Поэтому можно записать:

(27)

(28)

Коэффициенты должны быть определены из условий (23), (24), которые образуют относительно пар коэффициентов и с данным значком две независимые системы по два линейных уравнения. Запишем их, введя следующие обозначения: ; - относительный (комплексный) показатель преломления, - длина волны излучения. Для и имеем:

(29)

Аналогичная система получается для и :

(30)

Решая эти системы относительно и , получим:

(31)

Аналогичные выражения получаются и для и . Подставляя эти выражения в (27) и (28), получаем однозначное решение уравнений для потенциалов, удовлетворяющее всем граничным условиям. Из потенциалов, в соответствии с (14), можно получить выражения для составляющих внутреннего и дифрагированного полей. Так как в дальнейшем нас будет интересовать дифрагированное поле, то выпишем только его составляющие, восстановив опущенный ранее множитель Е0:

(32)

Штрихи всюду означают производные по аргументу, указанному под знаком функции ( и ). На достаточно большом расстоянии от рассматриваемой частицы, в так называемой волновой зоне, можно пренебречь составляющими Er и Hr по сравнению с составляющими по и . Дифрагированное поле будет являться поперечной волной, распространяющейся из источника дифракции. Введя обозначения

(33)

(34)

и применяя асимптоматические выражения для функций при , получим:

(35)

Согласно этим формулам, дифрагированное поле представляется в виде сумм отдельных парциальных волн. Интенсивность возбуждения -й парциальной волны определяется числами , которые существенно зависят от .

Поле вне частицы есть суперпозиция падающего и дифрагированного полей:

(36)

Средняя по времени величина вектора потока энергии определяется

(37)

где - вектор, комплексно сопряженный к . В силу (36) поток может быть представлен в виде , где - поток падающего поля, - дифрагированного поля и - поток, обязанный интерференции падающего и рассеянного излучений. Определим величины сечений поглощения сп и рассеяния ср излучения частицей

(38)

где J0 – интенсивность падающего излучения, - радиальные составляющие потоков, - элемент телесного угла, а - элемент площади на сфере. Все интегралы распространены по сфере. Полное ослабление потока в результате прохождения им частицы будет складываться из рассеяния и поглощения, т.е. для сечения ослабления излучения частицей имеем с = сп + ср. Поскольку поток падающего излучения постоянен по направлению, то и для искомых сечений получим

(39)

(40)

Рассмотрим интеграл в (39). Имеем Подставляя сюда выражение (32) для полей, выполняя интегрирование по и группируя соответствующим образом члены, получим двойную сумму следующих двух типов выражений:

Сумма будет иметь общий множитель . Оба интеграла легко вычисляются. Интеграл а) равен нулю, так как его подынтегральное выражение есть , а функция равна нулю при . В интеграле б) преобразуем вначале первое слагаемое, проинтегрировав его по частям

Заключение

В дипломной работе приведены некоторые примеры применения дифференциальных уравнений для моделирования таких реальных процессов, как колебания струны, электрические колебания в проводах, распространение тепла в стержне и пространстве, распространение температурных волн в почве, дифракция излучения на сферической частице.

Работа начинается с рассмотрения простейших задач, приводящих к дифференциальным уравнениям гиперболического типа (колебания струны, электрические колебания в проводах). Затем рассматривается один из методов решения уравнений данного типа. Во второй главе рассматриваются дифференциальные уравнения параболического типа (распространение тепловых волн) и одно из приложений к данной сфере – температурные волны. В третьей главе рассматривается вывод уравнения дифракции излучения на сферической частице.

Вследствие большого объема теории по применению дифференциальных уравнений для моделирования реальных процессов в данной дипломной работе не мог быть рассмотрен весь материал.

В заключение хотелось бы отметить особую роль дифференциальных уравнений при решении многих задач математики, физики и техники, так как часто не всегда удается установить функциональную зависимость между искомыми и данными переменными величинами, но зато удается вывести дифференциальное уравнение, позволяющее точно предсказать протекание определенного процесса при определенных условиях.

Литература.

  1. Н. С. Пискунов «Дифференциальное и интегральное исчисления», М., «Наука», 1972, том. 2.

  2. И. М. Уваренков, М. З. Маллер «Курс математического анализа», М., «Просвещение», 1976.

  3. А. Н. Тихонов, А. А. Самарский «Уравнения математической физики», М., «Наука», 1972.

  4. Владимиров В. С. «Уравнения математической физики», М., «Наука», 1988.

1 Это предположение эквивалентно тому, что мы пренебрегаем величиной по сравнению с 1. Действительно, .

2


Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
428
Средний доход
с одного платного файла
Обучение Подробнее