49771 (Методи оцінки та засоби підвищення надійності програмного забезпечення), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Методи оцінки та засоби підвищення надійності програмного забезпечення", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "49771"

Текст 2 страницы из документа "49771"

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтовується актуальність теми дисертаційної роботи, визначаються мета та задачі досліджень, основні положення, які виносяться на захист, а також стисло викладається наукова новизна і практичне значення результатів, отриманих в процесі досліджень.

В першому розділі виконано аналіз процесів забезпечення якості ПЗ ІУС, огляд існуючих рішень та здійснена постановка задачі дослідження.

Аналіз процесів забезпечення якості показав, що сучасне суспільство характеризується постійним зростанням ролі і значення інформації у світовій економіці, високими темпами розвитку ринку інформаційних технологій і послуг. Постійно розширюється сфера застосування ІУС. Невід'ємним елементом інформаційних систем є апаратні та програмні засоби. Комп'ютери та контролери, начинені інтелектуальним ПЗ, використовуються в автоматизованих системах контролю і управління ядерними реакторами, повітряним рухом, різноманітними рухомими об'єктами - ракетами, швидкісними потягами тощо.

Оскільки розроблення ПЗ вимагає значних фінансових і часових витрат, причому помилки можуть приводити до людських жертв і величезних фінансових збитків, то виникають проблеми створення якісного ПЗ при обмеженнях на фінанси та час.

Наведені і проаналізовані в цьому розділі численні приклади катастроф, викликаних помилками в ПЗ, підкреслюють важливість якості ПЗ. Проведений аналіз категорії “якість” дозволив виділити її основної складові і вимоги до них. Встановлено, що надійність може розглядатися як основна формалізована характеристика якості ПЗ.

Детальний розгляд задачі управління надійністю на всіх етапах ЖЦ ПЗ та проведене дослідження підтвердили необхідність забезпечення надійності ПЗ, починаючи із самих ранніх етапів ЖЦ ПЗ. Проведений аналіз стану досліджень в області тестування ПЗ, як засобу підвищення надійності в умовах застосування сучасних тенденцій у розробленні ПЗ, зазначених вище, дозволив зробити висновок, що існуючі засоби не задовольняють потребам щодо забезпечення надійності ПЗ. Отже, виникає необхідність в їхньому вдосконаленні чи розробці нових.

На основі виконаного аналізу в цьому розділі визначені мета й основні задачі дослідження, сформульовані проблемні питання управління якістю ПЗ, оцінювання поточного рівня надійності ПЗ і динаміки її росту/зниження, окреслені можливі шляхи досягнення необхідного рівня надійності ПЗ, які визначають структуру і зміст наступних розділів роботи.

Другий розділ присвячено дослідженню математичних основ надійності програмного забезпечення, аналізу існуючих моделей оцінювання надійності ПЗ, виявленню їхніх недоліків та переваг, розробці та експериментальному дослідженню моделі, яка враховує результати проведеного аналізу.

Для оцінювання надійності ПЗ використовують статичні та динамічні моделі. Статичні моделі базуються на припущенні, що якщо ідентифікувати усі вхідні комбінації даних для програми, то оцінка надійності може бути отримана шляхом виконання програми з усіма вхідними комбінаціями і дослідження отриманих результатів. Проведений аналіз показав, що застосування статичних моделей є обмеженим через значні фінансові витраті, пов’язані з великою кількістю тестів.

Динамічні моделі (або моделі зростання надійності) мають за мету дослідження розвитку надійності ПЗ у часі. В роботі проаналізовано модель Джелінського-Моранди, модель негомогенного пуасонівського процесу (Гоеля-Окумото), модель Шнайдевінда, базову модель Муси, гіперекспоненційну модель, модель Вейбула, S-подібну модель зростання надійності, геометричну модель, модель Муси-Окумото та модель Літлвуда-Верала.

В розділі спочатку обґрунтована недоцільність практичного застосування на великих проміжках часу моделей Джелінського-Моранди, Вейбула, геометричної моделі та моделі Літлвуда-Верала, оскільки вони були розроблені для апаратного забезпечення та відображають його основну характеристику: коли час прямує до нескінченності, надійність ПЗ прямує до нуля. Тобто в цих моделях початково закладена теза про те, що ПЗ з часом стає ненадійним.

Більш того, виконаний аналіз дозволив зробити висновок про те, що найбільш перспективними для практичного застосування є моделі, які базуються на негомогенному пуасонівському процесі. Для них надійність ПЗ прямує до одиниці, коли час прямує до нескінченності. Саме до цього типу належать моделі Гоеля-Окумото, Шнайдевінда, Муси і S-подібна модель зростання надійності.

Сукупним недоліком розглянутих в роботі моделей Гоеля-Окумото, Шнайдевінда і Муси є форма кривої інтенсивності виявлення несправностей. Крива є експоненційною функцією і строго спадає при . На основі реальних даних про кількість виявлених несправностей та їхній розподіл в часі, наданих Open Channel Software, автором проаналізовано якість роботи розглянутих моделей на практиці і встановлено, що така форма кривої інтенсивності не відповідає дійсності і не достатньо відображає процес тестування.

На практиці проведення процесу тестування має виглядати наступним чином:

- спочатку тестери не знайомі з проектом, вони знаходять дуже незначну кількість помилок, тобто інтенсивність виявлення помилок близька до нуля;

- з накопиченням досвіду інтенсивність виявлення помилок зростає;

- зрештою, у системі залишається невелика кількість несправностей, і виявлення кожної з них вимагає значного часу, тобто інтенсивність виявлення помилок спадає.

Що стосується функції інтенсивності виявлення несправностей S-подібної моделі, введення параметра t у першому ступені відрізняє її від функцій інтенсивності моделей Муси, Гоеля-Окумото і Шнайдевинда. Це дає можливість змінити форму кривої так, що спочатку інтенсивність зростає, а потім строго спадає, що більше відповідає практиці.

Проте, з огляду на наявність експоненти, ця зміна не є довгостроковою і не приводить до бажаних результатів. Отже, потрібне вдосконалення існуючих моделей, яке б враховувало вище зазначені переваги та недоліки.

З метою підвищення точності цієї моделі автор дисертаційної роботи пропонує та обґрунтовує використання такої форми кривої інтенсивності виявлення несправностей:

,

де n - додатковий параметр, який характеризує складність і розміри проекту.

Це дозволяє більш точно відтворювати форму кривої інтенсивності і враховувати наявні практичні результати.

У таблиці 1 представлені функції інтенсивності виявлення несправностей та кумулятивної кількості несправностей базових та узагальненої моделей, їхні параметри пов’язані з та такими співвідношеннями:

, , , , .

де – загальна кількість несправностей. які були виявлені в системі від початку спостереження, - швидкість зміни функції інтенсивності виявлення несправностей

Табл.1. Зв'язок між моделями негомогенного пуасонівського процесу

Назва моделі

Функція інтенсивності виявлення несправностей

Функція кумулятивної кількості несправностей

Модель Гоеля-Окумото

Модель Шнайдевінда

Базова модель Муси

S-подібна модель

Узагальнена модель негомогенного пуасонівського процесу

Застосуванням методу максимальної правдоподібності визначення параметрів , та n зведено до розв’язання системи рівнянь:

де вибір параметру n залежить від процесу проведення тестування, а його рекомендовані значення такі:

n=0 – для невеликого проекту, в якому розробник є одночасно і тестером (моделі Муси, Гоеля-Окумото і Шнайдевинда);

n=1 – для середнього проекту, в якому тестування і проектування ПЗ виробляється різними людьми з однієї робочої групи (S-подібна модель);

n=2 – для великого проекту, в якому групи тестування і розробки ПЗ працюють над проектом паралельно;

n=3 – для дуже великого проекту, в якому відділи тестування і розробки незалежні.

На основі наданих експериментальних даних проведено ряд досліджень, який дозволив дослідити вигляд функцій кумулятивної кількості несправностей запропонованої узагальненої моделі та інтенсивностей виявлення несправностей при різних вихідних даних та різних значеннях параметра n.

Наведені результати одного з експериментів демонструють, що найкраще наближення буде досягнуте при n=3, а найгірше – при n=0 (модель Муси, Шнайдевінда та Гоеля-Окумото). Це підтверджується і відповідними статистичними даними (табл.2), які характеризують різницю між вихідними даними (t_2) та відповідними значеннями функції при різних значеннях n.

Табл. 2. Статистичні дані до різниці при різних n і вихідних даних t_2

Статистичні показники

різниця функцій

t_2-

різниця функцій t_2-

різниця функцій t_2-

різниця функцій t_2-

Mean

16.13522

16.22889

19.88367

58.93807

Median

15.27700

14.11600

16.00000

60.89700

Maximum

33.58100

54.23600

49.10800

88.80200

Minimum

4.848000

-1.280000

4.175000

15.96200

Std. Dev.

8.374089

17.37143

14.07056

23.63765

Загальний недолік усіх досліджуваних моделей полягає в тому, що вони застосовні тільки після створення ПЗ. Більш того, для їх ефективного використання потрібна значна кількість статистичних даних про кількість і розподіл відмов, а такі дані не завжди можна одержати. Тому, крім моделей оцінювання надійності створеного ПЗ необхідно застосовувати альтернативні підходи. Одним з таких підходів є тестування, яке дозволяє не тільки оцінювати надійність ПЗ протягом його розроблення, але і підвищувати його надійність. Саме йому і присвячений наступний розділ.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5224
Авторов
на СтудИзбе
427
Средний доход
с одного платного файла
Обучение Подробнее