Задача 3: Колебания вариант 22
Описание
Зачтено на максимальный балл 💥💥💥
Спасибо за покупку! Удачи в обучении!
Задача 3
Вариант 22
Колебательная система (КС), представленная на рис. 32, состоит из невесомой пробирки площадью поперечного сечения S , на дно которой насыпана свинцовая дробь массой m . Пробирка с дробью опущена в жидкость плотностью r и находится в ней в вертикальном положении.
Пробирку, находящуюся в положении равновесия на глубине Н0, смещают на глубину H, а затем импульсом придают ей в начальный момент времени t=0 скорость V1 или V2 , в соответствии с заданием (см. таблицу № 14). В результате КС приходит в колебательное движение в вертикальном направлении. Коэффициент сопротивления при движении пробирки в жидкости равен r.
1. Вывести дифференциальное уравнение малых свободных затухающих колебаний, если сила сопротивления движению тела КС пропорциональна скорости, т.е., где r - коэффициент сопротивления.
2. Определить круговую частоту и период T0 свободных незатухающих колебаний.
3. Найти круговую частоту и период T свободных затухающих колебаний.
4. Вычислить логарифмический декремент затухания.
5. Определить, используя начальные условия задачи и исходные данные, начальные амплитуду A0 и фазу колебаний.
6. Написать с учетом найденных значений уравнение колебаний.


