Нейрон. синапс (842209), страница 3
Текст из файла (страница 3)
Пресинаптические окончания благодаря описанному механизму обратного захвата (реаптейка) захватывают и возвращают либо фрагменты трансмиттера (например, холин), либо всю молекулу трансмиттера (например, серотонин). Для этого в пресинаптической мембране находятся специфические протеины - транспортеры.
Во многих синапсах рецепторы для трансмиттера есть не только в постсинаптической мембране, но также и в пресинаптической. Это так называемые ауторецепторы.
Рис. 10. Расщепление, удаление и обратный захват трансмиттера на примере ацетилхолина
Типы химических синапсов.
У части синапсов ионный канал, который при действии лиганда, т.е. благодаря связыванию с молекулой трансмиттера, открывается (каналы, управляемые лигандами), называется ионотропным рецептором (рис. 11 А).
Рецепторы, в которых открытие ионного канала связано с подключением других химических процессов, называют метаботропными рецепторами. На метаботропных рецепторах лиганд открывает ионный канал не прямо, а опосредованно, через вторичные мессенджеры (рис.11Б).
Примером и ионотропного, и метаботропного синапса служит холинергический синапс, у которого трансмиттером служит АЦХ. У холинергических синапсов два типа рецепторов: АЦХ-рецепторы, чувствительные дополнительно к никотину (никотиновый АЦХ-рецептор), и АЦХ-рецепторы, чувствительные дополнительно к мускарину (мускариновый АЦХ-рецептор). Первый является ионотропным, второй - метаботропным.
Рис. 11. Ионотропные и метаботропные синапсы
Рис. 12. Механизмы работы ионотропного синапса (А) и метаботропного синапса (Б)
Тест
-
В ЦНС человека ключевую роль в передаче информации между клектами играют
-
электрические и химические синапсы
-
химические синапсы
-
Основу электрического синапса у человека играют
-
щелевые контакты
-
десмосомы и щелевые контакты
-
В структуре химического синапса переача сигнала осуществляется посредством
-
нейромедиатора
-
коннексинов
-
Химические синапсы ЦНС представлены следующими типами
-
метаботропными и ионотропными
-
только ионотропными
-
В основе работы метаботропного синапса лежит
-
механизм вторичных мессенджеров
-
изменение проницаемости ионных каналов
-
Нейромедиаторы. Нейромодуляторы
Типы трансмиттеров и механизмы их действия
Ацетилхолин. Является медиатором для всех двигательных нейронов, многих интернейронов ЦНС, а также нейронов парасимпатической нервной системы. Существует 2 типа рецепторов ацетилхолина: АЦХ-рецепторы, чувствительные к никотину: никотиновый АЦХ-рецептор и, соответственно, никотиновый АЦХ (нАЦХ) синапс, и АЦХ-рецепторы, чувствительные к мускарину - мускариновый АЦХ-рецептор и, соответственно, мускариновый (мАЦХ) АЦХ синапс. АЦХ синапс с никотиновым рецептором являются ионотропными, а АЦХ синапсы с мускариновым рецептором являются метаботропными.
Глутамат в синапсах выполняет функцию трансмиттера и ко-трансмиттера (может присутствовать одновременно с другими трансмиттерами, например с глицином). Глутамат в мозге является важнейшим трансмиттером для возбуждающих синапсов. Синапсы, использующие в качестве трансмиттера глутамат, находятся приблизительно на 50% нейронов центральной нервной системы. Такие синапсы образуют важнейшие возбуждающие входы систем мозга к коре большого мозга. Они принимают участие в процессах обучения. Глутамат прямо открывает неспецифический ионный канал для катионов.
Глицин служит трансмиттером тормозных синапсов и действует как нейромодулятор. Глицин предназначен для выполнения специфических ингибиторных задач. Большинство клеток Реншоу, через которые тормозятся α-мотонейроны спинного мозга, выбрасывают глицин. Глициновые рецепторы открывают каналы для ионов Cl-, что способствует возникновению так называемых тормозных постсинаптических потенциалов (тормозных потенциалов синаптической пластинки - ТПСП). Синаптическое действие заканчивается с помощью механизма обратного захвата глицина.
В центральной нервной системе глицин играет также и роль нейромодулятора, например, в гиппокампе NMDA-рецепторы, описанные в предыдущем разделе, испытывают модулирующее влияние со стороны глицина.
γ-Аминомасляную кислоту (ГАМК) выбрасывают в качестве трансмиттера многие тормозные интернейроны, имеющиеся практически во всех отделах центральной нервной системы, и аксоны клеток Пуркинье мозжечка. ГАМК оказывает тормозное действие на постсинаптические структуры. Существует по меньшей мере два различных постсинаптических механизма, которые запускаются благодаря различным рецепторам (ГАМКА и ГАМКС с одной стороны; ГАМКВ с другой стороны).
Серотонин (5-hydroxytryptamin) - биогенный амин, широко распространенный в ЦНС. В мозге его особенно много в области тектума. Оттуда наблюдается много проекций в лимбическую систему, к таламусу и гипоталамусу, в передний мозг, в мозжечок и в спинной мозг. По этим путям, очевидно, осуществляется контроль многих нейрональных функций. На постсинаптической мембране были обнаружены различные серотониновые рецепторы, которые большей частью, благодаря вторичным мессенджерам, открывают каналы для ионов К+ и Са2+. Действие трансмиттера заканчивается включением механизма обратного захвата пресинаптической областью.
Гистамин - моноамин, выступающий в качестве трансмиттера. Особенно важную роль он играет как модулятор в мозге грудных детей. Гистаминергические нейроны у взрослых находятся в заднем гипоталамусе и связаны со многими участками мозга, где они оказывают влияние на состояние бодрствования, мышечную активность, прием пищи, сексуальные отношения и обменные процессы в мозге. Из-за участия этих нейронов в регуляции процессов сна и бодрствования многие антигистаминные препараты вызывают состояние сонливости.
Дофамин - биогенный амин, наиболее представленный в базальных ганглиях, где нейроны черной субстанции образуют дофаминергический путь к стриатуму, выполняя функцию контроля моторики.
Дофаминергические пути, которые исходят от area ventalis tegmentalis и проецируются к nucleus accumbeus,играют большую роль в патогенезе эпилепсии.
Существуют различные дофаминовые рецепторы, действующие через вторичные мессенджеры. Их постсинаптическое действие может быть тормозным или возбуждающим. Дофамин очень быстро захватывается обратно из синаптической щели в пресинаптическое окончание. Там он претерпевает превращения благодаря моноаминоксидазе. Вне нейрона, он подвергается воздействию катехол-О-метилтрансферазы.
Норадреналин катехоламин, выполняющий функцию трансмиттера в ЦНС и синтезирующийся прежде всего нейронами locus coeruleus. Это ядро состоит не более чем из 1000 клеток, аксоны которых так многократно разветвляются, что можно найти адренергические окончания во многих областях ЦНС. Они оказывают модулирующее влияние, например, на процессы созревания, обучения, переработку информации в мозгу, регуляцию сна и на эндогенное торможение боли. В периферической нервной системе норадреналин служит важным трансмиттером симпатических постганглионарных окончаний, например, на сердце и на гладких мышцах сосудов. В некоторых центральных синапсах как трансмиттер рассматривают адреналин.
Для катехоламинов существует четыре главных типа рецепторов: α1, α2, β1 и β2. Они отличаются по реакции на различные агонисты или антагонисты, а также по постсинаптическим эффектам. Рецепторы α1 управляют Са2+-каналами при помощи вторичного мессенджера IP3 и при активации повышают внутриклеточную концентрацию ионов Са2+. Активация рецепторов ведет к уменьшению концентрации вторичного мессенджера цАМФ, вызывая различные эффекты. Активация рецепторов β, например, на клетках Пуркинье мозжечка, повышает при помощи вторичного мессенджера цАМФ проводимость мембраны для ионов К+ и, таким образом, образует ТПСП. Обратный захват и разрушение похожи на таковые для дофамина.
Олигопептиды, которые действуют как трансмиттеры или нейромодуляторы - это приемущественно короткие полипептиды, состоящие из 2-30 аминокислотных остатков. Они функционируют как трансмиттеры или ко-трансмиттеры либо модулируют синаптические процессы. Так энкефалин, эндорфин и динорфин служат трансмиттерами в тех синапсах, в которых опиоидные вещества также оказывают действие. Опиоиды (например, морфин) являются сильными анальгетиками. Вышеназванные опиоидные пептиды тормозят распространение боли в спинном мозге. Кроме того, они играют большую роль в лимбической, автономной и моторной системах.
Другие нейропептиды: вещество Р, ангиотензин II, соматостатин, вазоактивный интестинальный полипептид (VIP), нейропептид Y и многие другие. Большинство названных веществ были открыты в качестве гормонов прежде, чем была определена их роль в синаптическом переносе.
ГАМК как трансмиттер
Многие тормозные интернейроны, присутствующие практически во всех отделах ЦНС, и аксоны клеток Пуркинье мозжечка выбрасывают в качестве трансмиттера γ-аминомасляную кислоту (ГАМК, GABA: γ-Aminobutyric acid). ГАМК оказывает тормозное действие на постсинаптические структуры. Существует по меньшей мере два различных постсинаптических механизма, запускающихся благодаря различным рецепторам (ГАМКА, ГАМКС с одной стороны; ГАМКВ с другой стороны).
ГАМКА-и ГАМКС-рецепторы непосредственно открывают каналы для ионов Cl-, что приводит к появлению входящего Cl-тока и тем самым к гиперполяризации в виде ТПСП. Барбитураты (препараты, применяемые для наркоза), стероидные анестетики и транквилизаторы (успокаивающие средства) из класса бензодиазепинов (например, диазепам) усиливают ингибиторное действие ГАМКА-рецепторов. Механизм их действия заключается в связывании с белком ионного канала, который уже взаимодействует с ГАМК, и таким образом в усилении действия ГАМК.
Канал построен из нескольких субъединиц. Одна из этих субъединиц связывает ГАМК, другая может дополнительно связать бензодиазепин, третья - связать барбитурат и еще одна - связать стероид. В настоящее время неясно, какие природные вещества (например, нейромодуляторы) оказывают действие на так называемые бензодиазепиновые или барбитуратные рецепторы. Названные субъединицы могут обладать различными химическими свойствами, определяемыми их химической структурой, что обусловливает различные фармакологические эффекты. Бикукуллин представляет собой конкурентный блокатор для ГАМКА-, но не для ГАМКС-рецептора. Яд пикротоксин, вызывающий судороги, является неконкурентным блокатором, закрывающим канал для ионов Cl-.
ГАМКВ открывают каналы для ионов К+ посредством G-белка. Агонистом служит баклофен. Пресинаптические ГАМКВ-рецепторы закрывают каналы Са2+ и тормозят освобождение трансмиттера. Действие ГАМК прекращается путем обратного захвата ГАМК пресинаптическим окончанием и клетками глии.
Рис. 13. γ-Аминомасляная кислота как трансмиттер в синапсе: расщепление, удаление и обратный захват
Глицин как трансмиттер
Аминокислота глицин выполняет функцию трансмиттера в тормозных синапсах и действует как нейромодулятор. Глицин выполняет специфические ингибиторные задачи. Большинство клеток Реншоу, через которые осуществляется торможение α-мотонейронов спинного мозга, высвобождают глицин. Стрихнин является конкурентным антагонистом, и его применение приводит к судорогам из-за отсутствия торможения α-мотонейронов. Рецепторы глицина открывают С1--каналы, что способствует возникновению ТПСП. Синаптическое действие заканчивается с помощью механизма обратного захвата глицина.