1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 88
Текст из файла (страница 88)
Скорость клубочковой фильтрации (СКФ) поддерживается практически на постоянном уроне за счет миогенных реакций гладкой мускулатуры приносящих и выносящих сосудов, что обеспечивает постоянство эффективного фильтрационного давления. Ночью СКФ на 25% ниже. СКФ определяют по клиренсу инулина.
В образовании мочи участвуют все отделы нефрона. По мере прохождения крови через клубочки из них путем фильтрации образуется первичная моча. Фильтрат проходит через канальцы в собирательные трубочки. При этом его состав существенно изменяется в результате трансканальцевого транспорта воды и растворенных веществ. Этот транспорт происходит в двух направлениях. Если он направлен в каналец, то его называют канальцевой секрецией, если он направлен из канальца – канальцевой реабсорбцией.
В экскреции некоторых веществ, таких как К+, мочевая кислота и мочевина, участвуют все три механизма, только фильтрация и секреция – парааминогиппуровая кислота, только фильтрация и реабсорбция – глюкоза, только фильтрация – инулин.
Понятие о почечном клиренсе. Для того, чтобы объяснить различия в скорости выведения почками веществ, необходимо количественно оценить интенсивность их фильтрации в клубочках и переноса в канальцах. Такая оценка стала возможна после введения понятия клиренс. Почечный клиренс отражает скорость очищения плазмы от данного вещества.
Почечный клиренс какого-либо вещества В (Св) равен отношению скорости выделения этого вещества с мочой к его концентрации в плазме крови.
Св = Мв V/ Пв мл в минуту,
где Мв- содержание В в моче, Пв - содержание в плазме, а V - объем мочи за минуту.
Из этой формулы следует, что Св х Пв= Мв х V, т.е. количество вещества, удаляемого из плазмы за единицу времени, равно количеству вещества, выделяемого за это время с мочой. Клиренс какого-либо вещества количественно равен объему плазмы, полностью очищаемого от этого вещества почками за 1 минуту.
Однако, известны только два вещества, от которых определенный объем плазмы действительно очищается полностью. Эти два вещества и служат основной для общей оценки функции почки.
1. Клиренс инулина соответствует скорости клубочковой фильтрации, т.е. той части почечного плазматока, который фильтруется в клубочках.
2. Клиренс парааминогиппуровой кислоты (ПАГ) практически равен величине общего почечного плазматока, т.к. она выделяется как с фильтрацией, так и с секрецией полностью.
Для оценки функции почек не обязательно определять клиренс всех выводимых почками веществ. Достаточно оценить скорость клубочковой фильтрации (по инулину) и почечный плазматок (по ПАГ). Если оба эти показателя отчетливо снижены, то снижены и показатели очищения крови от других веществ. Обычно при этом повышена концентрация их в крови. Так, повышение содержания в крови небелкового азота свидетельствует о почечной недостаточности, если клиренс инулина снижен.
У взрослого человека весом 70 кг скорость кровотока в обоих почках равна 1300 мл/мин, что составляет 25% МОК. Такая высокая интенсивность кровотока необходима для обеспечения достаточного объема клубочковой фильтрации. У человека почечный кровоток (ПКТ) определяется методом измерения клиренса ПАГ, который равен почечному плазматоку (ППТ).
ПКТ = ППТ /(1-Гп),
где Гп - гематокритный показатель.
Особенностью почечного кровотока является его ауторегуляция. Она проявляется в том, что изменение величины среднего артериального давления от 80 до 180 мм рт. ст. не отражается на скорости почечного кровотока. Важнейшее значение этого явления состоит в поддержании постоянства скорости клубочковой фильтрации.
Содержание вещества в конечной моче равно его количеству, профильтровавшемуся в клубочках и поступившему в фильтрат при канальцевой секреции, за вычетом реабсорбированного.
Канальцевая секреция и реабсорбция. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0—1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, СI-, НСОз–. В последующих отделах нефрона всасываются преимущественно электролиты и вода. Секреция и реабсорбция могут быть пассивными и активными, т.е. без расхода энергии или происходить с затратой свободной энергии, вырабатываемой в реакциях метаболизма. Активная реабсорбция и секреция происходят главным образом в проксимальной части канальца В более дистальных отделах нефрона осуществляется тонкая регуляция содержания сильных электролитов, воды и Н+.
Реабсорбция воды и электролитов. При нормальном потреблении воды с мочой выделяется 1% или менее фильтрата, образующегося в единицу времени. Следовательно, профильтровавшаяся вода на 99% или более реабсорбируется в канальцах. Чрезмерное потребление воды сопровождается усилением мочеотделения в виде водного диуреза, при котором мочеотделение достигает 15% от скорости фильтрации. В этом случае выделяются большие объемы мочи гипотонической по отношению к крови. У человека 80% воды реабсорбируется в проксимальной части канальца.
Ионы K+, Na+, Ca2+, HPO4–, Cl–, Mg2+, HCO3–, реабсорбируются, главным образом, как и вода, в проксимальной части нефрона. Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной мочи уменьшается, и в начальный отдел петли нефрона поступает около 30% профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается до 25 %, в дистальном извитом канальце — около 9 %, и менее 1% реабсорбируется в собирательных трубках или экскретируется с мочой.
Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.
Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения.
Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол.
Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Глюкоза беспрепятственно проходит через клубочковый фильтр, но во вторичной моче она отсутствует или присутствует в ничтожном количестве. Иначе говоря, глюкоза полностью возвращается в кровь с помощью реабсорбции. При этом пороговый уровень реабсорбции составляет примерно 1,8 г/л (10 ммоль/л). Реабсорбция аминокислот и глюкозы происходит в проксимальной части канальца. Она сопряжена с транспортом Na+. В моче присутствуют только следы аминокислот, а реабсорбция носит активный характер. Мочевина реабсорбируется пассивно, т.е. только в силу разности концентраций.
Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+ ) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.
Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта — по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.
Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.
В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.
Канальцевая секреция. В выделении продуктов обмена и чужеродных веществ имеет значение их секреция из крови в просвет канальца против концентрационного и электрохимического градиентов. Секреция органических кислот (феноловый красный, ПАГ, диодраст, пенициллин) и органических оснований (холин) происходит в проксимальном сегменте нефрона и обусловлена функционированием специальных систем транспорта. Калий секретируется в конечных частях дистального сегмента и собирательных трубках.
Транспорт в нефроне К+ характеризуется тем, что К+ не только подвергается обратному всасыванию, но и секретируется клетками эпителия конечных отделов нефрона и собирательных трубок. При секреции К+ поступает в клетку в обмен на Na+ через эту же мембрану с помощью натрий-калиевого насоса, который удаляет Na+ из клетки; тем самым поддерживается высокая внутриклеточная концентрация К+. При избытке К+ в организме система регуляции стимулирует его секрецию клетками канальцев. Возрастает проницаемость для К+ мембраны клетки, обращенной в просвет канальца, появляются «каналы», по которым К+ по градиенту концентрации может выходить из клетки.
ЛЕКЦИЯ 31. ГОМЕОСТАТИЧЕСКИЕ ФУНКЦИИ ПОЧЕК.
31-1. Концентрация мочи в почках. Поворотно-противоточная система почки. Значение дистальных извитых канальцев и собирательных трубок нефрона в формировании конечной мочи. гормональный механизм регуляции этих процессов.