Главная » Просмотр файлов » R. von Mises - Mathematical theory of compressible fluid flow

R. von Mises - Mathematical theory of compressible fluid flow (798534), страница 87

Файл №798534 R. von Mises - Mathematical theory of compressible fluid flow (R. von Mises - Mathematical theory of compressible fluid flow) 87 страницаR. von Mises - Mathematical theory of compressible fluid flow (798534) страница 872019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 87)

W e consider a pieceof the contour along which the velocities are supersonic, i.e. in thepocket, and two points Λ, Β on it. Through each of them we draw both=458V. I N T E G R A T I O N T H E O R Y A N D S H O C K Scharacteristics and obtain the points of intersection of these characteristicswith the sonic line, e.g., in the order Ai Bi A$ B .* Consider the hodograph2image of the arc A Β and of the four points of intersection.

Because of themonotonicity law the images A[,B[, A ,2B must lie on the sonic circle in2the hodograph in the same order as their originals in the physical plane.N e x t the contour is deformed in such a w a y that, within the pocket astraight segment ^4*J5* is inserted. This can be done in such a manner thatany number of derivatives of the function which determines the contourremain continuous. Along A*B* we have θθ/ds = 0, and hence dq/dn = 0.Consider first the case that the speed q increases (or decreases) along A*B*or that there is a subsegment of A*B* along which q is monotonic.

Then thehodograph image A'*B'*of the (sub)segment A*B* will be a segment of aradius through the origin 0 ' . Clearly the points of intersection of the fourepicycloids through A *, Β * with the sonic circle will be in the order (omittingthe stars) AiB B Ax22(or ΒχΑιΑ Β ),22and hence not in the order requiredby the monotonicity law. Thus there is a contradiction.72N o w assume that q is constant along A*B*.

T h e hodograph image is asingle point A* and clearly the above contradiction cannot be derived.However, we can conclude that adjacent t o the straight segment alongwhich q and θ are constant, there is a small triangle in the supersonicpocket, bounded b y that segment and two intersecting straight characteris­tics through its end points, in which q = constant. W e call this triangleA*B*D. Adjacent to the straight characteristic A*D there must then be inthe pocket a simple wave W~, say, with straight characteristics C , and+cross-characteristics C~. This, however, leads to a contradiction, since wehave seen (Art.

18, p. 296) that the distance between two cross-characteris­tics measured along the straight characteristics tends to infinity as theMach angle a tends to 90°. Thus it is impossible that a simple wave con­tained in the finite pocket extends all the w a y to the sonic line. On theother hand, as is easily seen, it is also impossible that before the sonic lineis reached, the C~ pass out of the simple wave region.

Hence we again reacha contradiction.W e have thus proved that a flattened segment of a contour within asupersonic pocket is incompatible with our assumptions. Hence in theneighborhood of admissible profiles there are certainly profiles for whichno neighboring solution exists. Therefore(unlessflattenedprofiles areexcluded from the considerations) the original problem is not a correctlyset one.f* This order can be ensured b y taking AB sufficiently small; for all arcs withinsuch an A Β the same order will then appear.

Another possible order is Α A B B .t W e must in principle admit the possibility that b y flattening a piece of contourthe whole flow pattern changes abruptly so that the supersonic pocket moves awayand no longer contains the flattened piece. Such an abrupt change of flow correspondγ2x225.6CONJECTURES ON EXISTENCE I N T H E459LARGEOn the other hand take the classical problem of a Laplace potential flow.I t is certainly true that in the infinitesimal neighborhood of an admissiblecontour (i.e., one for which the incompressible flow problem past the con­tour has a solution) there are contours with corners, inadmissible becauseof infinite velocities.

Nevertheless, there is a significant difference betweenthe t w o situations: the compressible flow seems to be much more "sensi­t i v e " than the Laplace potential flow to a variation of the contour. A con­tour may be flattened without introducing a corner, i.e., a flattened con­tour can still have continuous curvature and actually as many continuousderivatives as we please; in this case there would be no trouble for Laplace'sequation. Interest in these considerations thus lies in the observation thateven so slight a discontinuity as that introduced by the flattening can makethe contour "inadmissible".

This sensitivity may be considered as point­ing towards an explanation of why smooth transonic potential flow of thetype considered is rarely observed in nature.73Frankl, Guderley, and Busemann have discussed the problem of pos­sible general lack of neighboring flows by means of suggestive arguments,partly physical, which make it plausible that the slighest irregularity ofthe contour leads to breakdown of potential flow.746. Conjectures on existence and uniqueness in the largeW e recall the problem that was taken as point of departure, and askourselves why we actually thought that an existence theorem might holdfor transonic flow.

T h e answer is obviously that it was formulated inanalogy to the classical incompressible flow problem (a linear problem) andis supported by the theorem for compressible subsonic flow (a nonlinearproblem). However, certain results holding for linear but mixed problemspoint towards a negative rather than a positive answer; the correspondingconjectures concerning our problem are particularly suggestive. Only afew hints can be given here.In 1923 Tricomi studied the equation of mixed typementioned at the beginning of Sec. 2. M o r e generally, writing uetc., the equationxx(2')A(x,y)uxx+ B(x, y)uxy+C(x, y)uyy= d u/dx ,22= F(x, y, u u , u )is an equation of mixed type if the function Δ ( # , y) = By2xy— 4AC changessign across a curve without vanishing identically.ing to an arbitrarily delicate change in contour would imply that the problem is notcorrectly set..460V.

I N T E G R A T I O N T H E O R Y A N D S H O C K SReturning to E q . (2) we shall show why a correctly posed mixed bound­ary-value problem may differ essentially from the analogous elliptic prob­lem (incompressible or compressible subsonic flow past a profile is elliptic).Consider (Fig. 173) a region bounded by an arc C in the elliptic halfplane, y > 0, and two characteristics SiT, S T.

T h e equation of thecharacteristics is easily found, since (see A r t . 9, p. 108) y dy + dx = 0or dx = ±( — yYdy, whence022(x - c) + iy2z2= 0,with c an arbitrary constant. These characteristics, real only for y S 0,are semicubic parabolas. I t has been proved by Tricomi that a solution uof (2) is determined in the region above b y boundary values along C andalong one of the characteristics alone, say SiT, while values along S Tcannot be prescribed arbitrarily.For us the following extension (due to Frankl) of this problem is ofimportance.

Consider (Fig. 174) a region bounded by an arc C o betweenSi and S in the elliptic region, by two arcs of characteristics issuing froman arbitrary point Ο on the transition line and by two arbitrary noncharacteristic arcs issuing from Si and S , the latter intersecting the character­istics through Ο in 7\ and T respectively (the "arbitrary" arcs mustlie as shown in the figure, with SiTi intersecting every characteristic ofthe family containing OTi only once and similarly for S T ). T h e figure alsoshows the characteristics TiR and T R, as well as the characteristics through51 and S . T h e value of u is given along TiSiS T (where we go from Si to5 along C o ) , but not along any arc T T in OTiT R, nor along OTi and OT ™T h e function u is then determined firstly in OTiSiS T 0, and then in thequadrangle TiOT R (and actually beyond this region, in the whole char­acteristic triangle bounded by the horizontal line SiS and the t w ocharacteristics SiT and S T issuing from Si and S , respectively; this,however, is not needed for the following).

But if u is uniquely determinedin the region RTiSiS T Rby the values along T SiS T , then obviously0275229222222X222222222222x22χΤF I G . 173. Illustrating Tricomi problem.ΤF I G . 174. Illustrating Frankl problem.25.6CONJECTURES ON EXISTENCE I N T H ELARGE461F I G . 175. Illustrating conjecture that data cannot be prescribed everywhere onarbitrary contour.values of u cannot be given arbitrarily along T\T . Thus, the problem in whichu is prescribed along a closed contour which lies partly in the elliptic,partly in the hyperbolic region is incorrectly posed.2Following Busemann, Frankl, and particularly Guderley, we now formu­late a similar problem of flow past a profile with supersonic enclosure(Fig.

175). W e consider only the upper part of the profile which, for con­venience, is supposed to be symmetric; let Π denote the upper half planeoutside the contour, Η the supersonic part of Π between SiS and the sonicline, which is here the transition line S\OS . T h e flow is subsonic (elliptic)in the part of Π extending to infinity outside the sonic line, and supersonic(hyperbolic) in SiTiT S OSi. This problem differs from the Frankl prob­lem in the fact that the elliptic region, the subsonic part, extends to in­finity and in the fact that the differential equation for φ is nonlinear;consequently, we do not know a priori the position of the sonic (transition)line, nor of T\ and T , as one does in FrankFs problem. (The equation forφ is likewise nonlinear; to use it we would need an analogue of the Franklproblem with θφ/dn rather than φ given along the boundary.) If we couldassume that a similar uniqueness* theorem holds for this much more dif­ficult problem we could conclude as before: Assume that a solution existsin Π; for this solution, ψ = 0 along AT\T B;it is however uniquely deter­mined by the boundary value ψ = 0 along ATi and BT alone.

Hence, ifthe arc T\T of the contour is deformed (no matter how slightly) so thatit is no longer part of the level line ψ = 0 of the solution, then no solutionwill exist for the deformed contour, f This would mean that the problemwe took as point of departure is not correctly set in the sense explainedat the beginning of the preceding section.22222222Thus under the assumption that in the more general mixed and nonlinearcase and with the elliptic region extending to infinity, a result similar to* N o t e that only a uniqueness theorem is required in this case,t N o t e that neither this conclusion nor that regarding the nonexistence fortened profiles applies if the contours are assumed analytic.flat­462V.

Характеристики

Тип файла
PDF-файл
Размер
10,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее