Advanced global navigation satellite system receiver design (797918)
Текст из файла
ADVANCED GLOBAL NAVIGATION SATELLITESYSTEM RECEIVER DESIGNThesis Submitted for the Degree of Doctor of PhilosophyPaul BluntUniversity of Surrey,Surrey Space CentreAcademic Supervisor: Dr Stephen HodgartIndustrial Supervisor: Dr Martin UnwinFebruary 2007AbstractThe research described by this thesis was undertaken at a very timely moment in thedevelopment of global navigation satellite systems (GNSS). During the course of thiswork the signal structure of an entirely new generation of GNSS signals was beendefined.
The first satellites producing a new range of different coding and modulationschemes have been launched, initiating the modernisation of the American GPS andthe introduction of the European Galileo system.An important aspect of the new signal structure for both GPS modernisation andGalileo is an entirely new kind of modulation called BOC (Binary Offset Carrier).Despite certain advantages this modulation comes with the notorious characteristic ofa multi-peaked correlation function.
In our view all known receivers, or receiverprinciples, have problems with this: either because the receiver is not fail safe and ispotentially unreliable (the so-called bump-jumping receiver); or the multi-peaks areeliminated at the very substantial cost in much degraded accuracy. During myresearch under Dr Hodgart what seems to be an entirely new and original method hasbeen developed which entirely solves the problem of tracking BOC. The problem ofmulti-peaks goes away and there is no loss of potential accuracy. This thesisdescribes in detail this invention and the first experimental results.This research was carried out at the University of Surrey under the joint supervisionof Surrey Space Centre and Surrey Satellite Technology Ltd. Shortly before this workbegan SSTL achieved a contract to design and build the first ever test satellite (GioveA) of the Galileo signals and technology.
This research contributed to the design andmanufacture of a Galileo signal generator which was flown on-board the satellite(launched December 2005). Expanding upon SSTL’s existing designs this workenabled the design and creation appropriate receivers to monitor the transmissionsboth in ground based emulations and real live tests after launch. These designs areintended to be the core of future SSTL space receivers. This thesis describes in detailthe creation of both transmitter and receiver architectures for the testing andevaluation of GNSS signals.TABLE OF CONTENTS12345678Introduction..........................................................................................................161.1The CASE PhD studentship.........................................................................161.2The future of GNSS .....................................................................................171.3Outline of thesis ...........................................................................................20Background, motivation and goals ......................................................................232.1SSC, SSTL, satellites and GPS ....................................................................232.2Research objectives and goals .....................................................................25Signal characteristics ...........................................................................................293.1Heritage GPS signal characteristics .............................................................293.2GPS modernised signal characteristics ........................................................373.3Galileo signal characteristics .......................................................................44PSK and BOC signals ..........................................................................................504.1Signal spectra and bandwidth ......................................................................504.2Correlation functions ...................................................................................544.3Theoretical timing measurement of PSK modulated signals.......................584.4Theoretical timing measurement of BOC modulated signals ......................634.5PSK and BOC multipath analysis ................................................................67Receiver theory ....................................................................................................755.1Searching for PSK signals ...........................................................................765.2Tracking PSK signals...................................................................................845.3Searching for BOC signals...........................................................................905.4Tracking BOC signals..................................................................................995.4.1BOC tracking using a single sideband ...............................................1005.4.2BOC tracking with multiple gate discriminators ...............................1015.4.3The bump-jumping algorithm ............................................................1055.4.4The effect of distortion on the BJ algorithm......................................1125.4.5The effect of multipath on the BJ algorithm......................................1165.4.6Hardware requirements of BOC tracking techniques ........................1185.4.7Comparison of BOC tracking schemes..............................................118BOC tracking with double estimation receiver..................................................1206.1The coherent BOC double estimator..........................................................1206.2The incoherent BOC double estimator ......................................................1306.3The DE AltBOC receiver...........................................................................1336.4Simulated performance of DE BOC ..........................................................1356.5The effect of asymmetry ............................................................................1396.6Integrity of the DE BOC receiver ..............................................................1406.7Hardware requirements of the DE BOC receiver ......................................1436.8Summary of the advantages of a DE BOC receiver ..................................144GNSS signal generators and the Giove-A satellite ............................................1467.1The Giove-A mission and payload ............................................................1467.2Digital noise synthesis ...............................................................................158The SGR receivers and the PIF receiver............................................................1638.1The SSTL receiver hardware .....................................................................1638.2SGR acquisition and tracking loops...........................................................1698.3PIF receiver hardware and frequency plan ................................................1788.4Correlator design for the PIF receiver .......................................................1828.5Processor design for the PIF receiver ........................................................1859Prototype receiver testing and results ................................................................1909.1AGC and GPS testing ................................................................................1909.2BOC measurements and testing .................................................................20010Single chip GPS and Giove-A receiver .........................................................20710.1 Single chip receiver overview....................................................................20710.2 RF front-ends for the single chip receiver .................................................21010.3 Receiving the Galileo BOC(1,1) E1 signal................................................21211Discussion, conclusions and future work.......................................................21811.1 Academic contributions .............................................................................21811.2 Practical contributions ...............................................................................22011.3 Future Work ...............................................................................................221References..................................................................................................................223A Tiered codes for GPS modernisation and Galileo..............................................A-1B Mathcad simulations of PSK and BOC .............................................................B-1B.1Received signal representations.................................................................B-1B.2Example simulation ...................................................................................B-2C Analogue and digital DLL formulas ..................................................................C-1C.1Introduction................................................................................................C-1C.2Linear system equivalent ...........................................................................C-4C.3Signal averaging.........................................................................................C-5C.4Digital loop analysis ..................................................................................C-5C.5Loop operation ...........................................................................................C-7C.6Conversion from RF system ......................................................................C-8C.7Informal comparison with coherent DLL systems.....................................C-8C.8Comparison with digital loop.....................................................................C-9C.9Time estimate error from the SLL ...........................................................C-10C.10 Loop operation .........................................................................................C-11C.11 Symbol list for Appendix C .....................................................................C-13D Setting loop parameters in practice....................................................................D-1E Choosing a bump jumping threshold .................................................................
E-1F Digital Noise Synthesis...................................................................................... F-1F.1Introduction................................................................................................ F-1F.2Adding noise ..............................................................................................
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.















