summary (797513), страница 2

Файл №797513 summary (Isomonodromic deformations and quantum field theory) 2 страницаsummary (797513) страница 22019-05-20СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Thisformula is obtained as a solution of system of integrable equations, so called SeibergWitten equations:II∂log τSW =dSaI =dS,∂aIBIAISimilar equations describe low-energy behaviour of N = 2 supersymmetric gauge theories,that are also closely related to CFT due to AGT correspondence.Another result of this chapter is identification between the Fourier transformation ofconformal block and explicit formula for the tau-function for quasi-permutational monodromy known due to Korotkin: Xa(n,b)1(U )τIM (q|a, b) =G0 (q|a + n)e= τB (q) exp 2 Q(r) Θbgn∈ZThis fact gives one more evidence for the correspondence between W-algebras and isomonodromic deformations.Chapter 6This chapter is also devoted to W-twist fields, but from more algebraic point of view.Here we consider the W-algebras for the orthogonal series, too.

We start from the freefermionic definition of W-algebras. Their generators in the B- and D-series may be written5in terms of complexified real fermions as follows:Uk (z) =1 k−1D2 zNX(ψα∗ (z) · ψα (z) + ψα (z) · ψα∗ (z)) + 21 Dzk−1 Ψ(z) · Ψ(z)α=1NYV (z) =: ψα∗ (z)ψα (z) : Ψ(z)α=1where Dz is Hirota derivative. We reformulate construction of the twist fields in termsof fermions. It turns out that now correct object, that parametrizes twist fields, is thenormalizer of Cartan algebra NG (h). Different conjugacy classes in NG (h) give differenttwist fields.Main subject of this chapter is the computation of characters of modules, constructedabove the twist fields. Typical example of such character is the formula for the twist fieldwhich corresponds to element g consisting of K cycles of lengths li with extra diagonalmultipliers ri :KP1(r l +ni )2P2li i ii=12KqP lj −124lj n1 +...+nK =0j=1χg (q) = qK Q∞Q(1 − q k/lj )j=1 k=1In the numerator we see the lattice AK−1 theta-function.One of the parts of this chapter is devoted to the situation when g1 ∼ g2 are conjugated in G for inequivalent g1 , g2 ∈ NG (h).

We show that in this case two differentcharacters coincide χg1 (q) = χg2 (q). This gives a series of non-trivial character identities,which we also prove explicitly. Some of them coincide with Macdonald identity, and someof them seem to be new. One of the tools of character computations are exotic bosonization formulas that relate bosons and fermions with different boundary conditions: likebosonization of periodic and anti-periodic fermions into single anti-periodic boson.In this chapter we also compute conformal blocks of the twist fields in D-series.

Mainfeature of this case is the structure of the 2N -fold cover, which can be shown on thefollowing commutative diagram:π2NσΣπ2Σ̃πNCP1This cover has an involution σ, and its factor over this involution is smaller N -fold cover.Most of the objects that are used in the construction are σ-antisymmetric: for example,the only sufficient part of the period matrix is Prym period matrix. Desired formula forconformal block in this case has the structure similar to A-case:G0 (a, r, q) = τB (Σ|q)τB−1 (Σ̃|q)τSW (a, r, q)In some cases it can also reduce to the formula for A-series.6ConclusionThis thesis contains some number of constructions that give explicit formulas for isomonodromic tau-functions, for conformal blocks of W-algebras, and relate some of them toeach other.

The main technical tools are free-field constructions of the vertex operators,use of Seiberg-Witten integrable system, and manipulations with projection-like operatorsin functional spaces.ReferencesThe content of Chapters 2-5 is based on the following papers in order:2.

P. Gavrylenko, Isomonodromic τ -functions and WN conformal blocks, JHEP09(2015)167,[hep-th/1505.00259]3. P. Gavrylenko, A. Marshakov, Free fermions, W-algebras and isomonodromic deformations, Theor. Math. Phys. 2016, 187:2, 649–677, [hep-th/1605.04554]4. P. Gavrylenko, O. Lisovyy, Fredholm determinant and Nekrasov sum representationsof isomonodromic tau functions, [math-ph/1608.00958], Under review in Communications in Mathematical Physics5. P.

Gavrylenko, A. Marshakov, Exact conformal blocks for the W-algebras, twistfields and isomonodromic deformations, JHEP02(2016)181,[hep-th/1507.08794]6. M. Bershtein, P. Gavrylenko, A. Marshakov, Twist-field representations of Walgebras, exact conformal blocks and character identities , [hep-th/1705.00957], Under review in Communications in Mathematical Physics7.

Характеристики

Тип файла
PDF-файл
Размер
236,05 Kb
Высшее учебное заведение

Список файлов диссертации

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее