Главная » Просмотр файлов » Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl

Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl (794382), страница 30

Файл №794382 Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl (Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl) 30 страницаDarrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl (794382) страница 302019-05-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 30)

Computing dy/dx from the previous expressions for x and y, we obtaindX = -X tan a(2. 125)daThe integral X = a cos a of this equation then givesx= a cos a(2 - cos2 a),y=a sin a cos2 a,(2.126)which are the same as eqns (2. 1 19) with r = tan a.153The extreme simplicity of this derivation strikingly illustrates the transformation ofmathematical physics announced in the introduction to this chapter.

In 1775, Laplacealready knew the equations of hydrodynamics that are needed to formulate the ship-waveproblem mathematically. Had he dared to approach this problem, he would probably have1 5"This reasoning is from Lighthill [1957] pp. [21-2, [1978] pp. 269-79. See also Billingham and King [2000] pp.99-105. Thomson ([1887fl pp. 425-7) gives this geometrical construction of the characteristic angle, without thephysical interpretation.153The form X = a cos rx of the constant-phase condition also derives from </> = wt - kd (witht = 2X/V, d = Xcosrx, V cos a = wfk = .,fijk), which leads to </> = gXfV2 coso:.100WORLDS OF FLOWfallen into the same error as in the waves-by-emersion problem, for he did not know howto synthesize local perturbations from sinusoidal ones.

Some forty years later, Poisson andCauchy could have written the multiple integral that yields the water disturbance behindthe ship. But they lacked efficient means to evaluate this integral. Ninety years later,Thomson succeeded in this task thanks to 'the principle of interference'. Through therelated intuition of wave groups, he even suggested a way to circumvent the integral andreason in geometric terms.This story exemplifies a symbiotic evolution of mathematical analysis and physical inter­pretation in the nineteenth century. The need to solve the differential equations of physicsproblems such as the propagation of heat inspired new mathematical tools such as Fourieranalysis.

In turn, the application of these tools to a broad array of physical phenomenaprovided them with physical interpretations that suggested more efficient ways of hand­ling them. From raw, algebraic procedures for combining and transforming mathematicalexpressions, they became genuine physico-mathematical tools. Whereas in their moreprimitive guise they often generated impenetrable integrals, in their mature form theyrevealed the behavior of the integrals.This evolution largely explains the success of nineteenth-century theorists in dealingwith complex wave patterns in the linear approximation. That Stokes, Boussinesq, andRayleigh could also solve an important class of nonlinear problems depended on anotherquality, namely, their ability to develop methods of approximation that combined twodifferent small parameters, the slope and the elevation of the waves.

In both cases, acentury elapsed between the basic formulation of the problem in Lagrange's memoir of1781 and a fairly complete mastery of the observed wave behaviors. Although this mayseem a long time, it is less than what was needed for a fragmentary answer to otherhydrodynamic questions.With hindsight, there are three peculiarities of water-wave motion that make it moreeasily amenable to mathematical analysis than other forms of fluid motion. Firstly, it canbe studied with reasonable accuracy without taking into account the small viscosity ofwater. Secondly, in the same approximation it can be regarded as irrotational (except forGerstner's waves) and therefore admits a harmonic velocity potential.

Thirdly, it is stableand non-turbulent, except in the limit of breaking waves. We will now leave this relativelysimple domain and enter more troubled waters.3VISCOSITYM. Navier himself only gives his starting principle as a hypothesis that can beverified solely by experiment. If, however, the ordinary formulas of hydro­dynamics resist analysis so strongly, what should we expect from new, farmore complicated formulas?1 (Antoine Coumot, 1828)As far as I can see, there is today no reason not to regard the hydrodynamicequations [ofNavier and Stokes] as the exact expression of the laws that rule themotions of real fluids. 2 (Hermann Helmholtz, 1 873)In the early nineteenth century, the rational fluid mechanics of d'Alembert, Euler, andLagrange remained irrelevant to the mundane problems of pipe flow and ship resistance.Engineers had their own empirical formulas, and mathematicians their own paper theoryof perfectly unresisted flow.

A similar contrast existed in the case of elasticity: the formulasestablished by mathematicians for the flexion of prisms were oflittle help in evaluating thelimits of rupture in physical constructions. In the 1 820s and 1 830s, a new breed of Frenchengineer-mathematicians trained at the Ecole Polytechnique, mainly Navier, Cauchy, andSaint-Venant, struggled to fill this gap between theory and practice. As a preliminary steptoward a more realistic theory of elasticity, in 1 821 Navier announced the general equa­tions of equilibrium and motion for an (isotropic, one-constant) elastic body. Transposinghis reasoning to fluids, he soon obtained a new hydrodynamic equation for viscous flow,namely the Navier-Stokes equation.Navier'slattertheoryreceivedlittlecontemporaryattention.

TheNavier-Stokes equationwas rediscovered or rederived at least four times, by Cauchy in 1 823, by Poisson in 1 829, bySaint-Venant in 1837, and by Stokes in 1 845. Each new discoverer either ignored or deni­grated his predecessors' contribution. Each had his own way tojustify the equation, althoughthey all exploited the analogy between elasticity and viscous flow. Eachjudged differently thekind ofmotion and the nature ofthe system to which it applied. The comparison between thevarious derivations of this equation-or of the equations of motion of an elastic body­brings forth important characteristics of mathematical physics in the period 1820-1 850.A basic methodological and ontological issue was the recourse to molecular reasoning.Historians have often perceived an opposition between Laplacian molecular physics onthe one hand, and macroscopic continuum physics on the other, with Poisson being thechampion of the former physics, and Fourier the champion of the latter.

Closer studies ofFourier's heat theory have shown that the opposition pertains more to the British readingof this work than to its actual content. Fourier actually combined molecular intuitions1 Cournot [1 828] p. 13.2Helmholtz [1 873] p. 158.102WORLDS OF FLOWwith more phenomenological reasoning. Viscous-fluid and elastic-body theorists similarlyhybridized molecular and continuum physics. Be they engineers or mathematicians, theyall agreed that the properties of real, concrete bodies required the existence of non­contiguous molecules. However, they differed considerably over the extent to whichtheir derivations materially involved molecular assumptions.At one extreme was Poisson, who insisted on the necessity of discrete sums overmolecules. At the other extreme was Cauchy, who combined infmitesimal geometry andspatial symmetry arguments to defme strains and stresses and to derive equations ofmotion without referring to molecules.

Yet the opposition was not radical. Poisson reliedon Cauchy's stress concept, and Cauchy eventually provided his own molecular deriv­ations. Others compromised between the molecular and the molar approach. Navierstarted with molecular forces, but quickly jumped to the macroscopic lev!!l by consideringvirtual works. Saint-Venant insisted that a clear definition of the concept of stress couldonly be molecular, but nevertheless provided a purely macroscopic derivation of theNavier-Stokes equation. Stokes obtained the general form of the stresses in a fluid by aCauchy type of argument, but he justified the linearity of the stresses with respect todeformations by reasoning on hard-sphere molecules.These methodological differences largely explain why Navier's successors ignoredor criticized his derivation of the Navier--Stokes equation.

His short cuts from the molecu­lar to the macroscopic levels seemed arbitrary or even contradictory. Cauchy and Poissonsimply ignored Navier's contribution to fluid dynamics. Saint-Venant and Stokes bothgave credit to Navier for the equation, but believed an alternative derivation to be neces­sary. To this day, Navier's contribution has been constantly belittled, even though hisapproach was far more consistent than a superficial reading may suggest.This wide spectrum of methodological attitudes, both in fluid mechanics and in elasti­city theory, corresponds to different views of mathematical rigor and different degrees ofconcern with engineering problems. Navier's way of injecting physical intuition intomathematical derivations was alien to Cauchy and Poisson, who were the least involvedin engineering and the most versed in higher mathematics.

Yet many engineers judgedNavier's approach too mathematical and too idealized. Personal ambitions and prioritycontroversies enhanced, and at times even determined, the disagreements. Acutely awareof these tensions, Saint-Venant developed innovative strategies that combined the de­mands of mathematical rigor and practical usefulness.The many fathers of the Navier--Stokes equation also differed in the types of applicationthey envisioned. Navier and Saint-Venant had pipe and channel flow in mihd.

Cauchy'sand Poisson's interests were more philosophical than practical. Cauchy did not evenintend the equation to be applied to real fluids; he derived it for 'perfectly inelastic solids',and noted its identity with Fourier's heat equation in the limiting case of slow motion.Stokes was motivated by British geodesic measurements that required aerodynamic cor­rections to pendulum oscillations.To Navier's disappointment, his equation worked well only for slow, regular motions,as occurs around pendulums and within capillary tubes. In most hydraulic cases, thereseemed to be no alternative to the empirical approach of engineers.

Характеристики

Тип файла
PDF-файл
Размер
11,39 Mb
Тип материала
Высшее учебное заведение

Список файлов учебной работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6382
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее