Главная » Просмотр файлов » Л.С. Корухова, М.Р. Шура-Бура. Введение в алгоритмы

Л.С. Корухова, М.Р. Шура-Бура. Введение в алгоритмы (793777), страница 7

Файл №793777 Л.С. Корухова, М.Р. Шура-Бура. Введение в алгоритмы (Л.С. Корухова, М.Р. Шура-Бура. Введение в алгоритмы) 7 страницаЛ.С. Корухова, М.Р. Шура-Бура. Введение в алгоритмы (793777) страница 72019-04-24СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

И, наконец,всю таблицу переходов представим конкатенацией всех цепочек, изображающих строки, ицепочки &&, отмечающей конец изображения. В этой конкатенации цепочки,изображающие строки, берутся в порядке возрастания номеров соответствующихсостояний. Введенное представление (изображение) таблицы переходов машиныТьюринга можно использовать для решения следующей задачи.Если машина Тьюринга применима к полученному таким образом слову,изображающему ее таблицу переходов, то мы будем говорить, что эта машинасамоприменима или что самоприменим алгоритм, реализуемый этой машиной.

Если жеконкретная машина не применима к рассматриваемому слову, то мы будем говорить онесамоприменимости машины или о несамоприменимости алгоритма. Само по себепонятие самоприменимости выглядит весьма экзотически. Однако оно оказываетсяпростым средством для строгого доказательства интересных и важных утверждений обалгоритмической неразрешимости некоторых проблем, касающихся алгоритмов.Докажем прежде всего следующую теорему:Теорема 1:Не существует алгоритма, определяющего по изображению произвольного алгоритма,самоприменим он или несамоприменим.ДоказательствоПредположим, что такой алгоритм существует.

Без потери общности можно считатьего алгоритмом вычисления предиката, который по изображению любого алгоритма Авычисляет значение истина (да), если А самоприменим и ложь (нет), если А несамоприменим.Рассмотрим алгоритм В, реализующий альтернативу :если "алгоритм А самоприменим" то "бесконечный цикл" иначе СТОП. Здесь А произвольный алгоритм. Вспомним, что выше было показано существование машиныТьюринга, реализующей альтернативу, при условии существования машины Тьюринга,вычисляющей значение предиката истинности условия.Алгоритм В должен быть либо самоприменим, либо не самоприменим. Однако каждоеиз этих предположений оказывается ложным. Действительно, применение алгоритма В ксвоему собственному изображению завершается только в том случае, когдаалгоритм В несамоприменим, что противоречит определению самоприменимости.

Если жеалгоритм В самоприменим, то применение его к собственному изображению приводит кбесконечному циклу, что противоречит предположению о самоприменимости.Полученное противоречие доказывает теорему, из которой следует Теорема 2.Теорема 2:Не существует алгоритма, определяющего применимость произвольного алгоритма кпроизвольному слову.ДоказательствоСуществование такого алгоритма противоречило бы теореме 1, посколькуизображение алгоритма можно считать одним из возможных слов.

И в соответствии стеоремой 1 не существует алгоритма, определяющего применимость любого алгоритма кего изображению в виде слова. Теорема 2 подтверждает невозможность в общем видезаменить зацикливание алгоритмов аварийными завершениями.237. УНИВЕРСАЛЬНАЯ МАШИНА ТЬЮРИНГАКак уже было отмечено выше, работа каждой машины Тьюринга сводится к процессувыполнения весьма простого алгоритма U, использующего исходное слово w исоответствующую таблицу переходов.Рассматривая понятие самоприменимости, мы познакомились с конкретным способомпредставления таблицы переходов машины Тьюринга словом внешнего алфавита.Используя такое представление, мы можем свести исходные данные алгоритма U к пареслов - слову m, представляющему таблицу переходов соответствующей машиныТьюринга, и слову w - исходному слову для работы этой машины. Дополнив внешнийалфавит специальным разделяющим символом, например, *, мы можем считать, чтоисходным словом алгоритма U является слово m*w, а словом - результатом : m*T(w), еслимашина Т применима к слову w.

Если же машина Т не применима к слову w, то алгоритмU не завершается при исходном слове m*w.В силу гипотезы Тьюринга существует машина Тьюринга Т U, эквивалентная алгоритмуU, т.е. машина, способная выполнить работу любой машины Тьюринга над любымзаданным словом или, как говорят, способная моделировать любую машину Тьюринга.Машина ТU называется универсальной машиной Тьюринга. Существование такой машинывытекает из гипотезы Тьюринга.

Конкретное же построение такой машины можетрассматриваться как дополнительный аргумент в пользу принятия гипотезы Тьюринга.Вместо полного описания таблицы переходов универсальной машины Тьюринга мыограничимся здесь общей схемой работы такой машины.Пусть на ленте машины записано слово @m*w, а управляющая головка обозреваетпервый символ этого слова, находясь в начальном состоянии. Далее выполняютсяследующие этапы:1.

Управляющая головка просматривает слово @ m*w и обнаруживает символ *,переходя в новое состояние к первому символу слова w.2. Обозрев ячейку, управляющая головка "запоминает" записанный в ячейке символ,переходя в соответствующее состояние, записывает в ячейку ленты символ * и"отправляется" налево до пустой ячейки, где переходит затем к правой соседней ячейке.Возникшая ситуация будет повторяться в процессе работы универсальной машиныТьюринга и соответствует началу поиска алгоритмом U клетки в таблице переходов,соответствующей состоянию и обнаруженному символу. Напомним, что обнаруженныйсимвол отражен в состоянии управляющей головки универсальной машины, а состояниеуправляющей головки моделируемой машины отражено цепочкой из символов @,предшествующей слову m.

На первый раз эта цепочка состоит из одного символа @, чтосоответствует начальному состоянию. В дальнейшем эта цепочка оказывается такой,какая возникает в результате выполнения этапа 4.3. В слове m ищется соответствующая строка.4. В найденной строке ищется клетка, помеченная запомненным на шаге 2 символом.Запоминаются символ, сигнал протяжки и признак заключительного состояния, указанныев этой клетке. А также переносится цепочка @@...@, изображающая новое состояние, такчтобы ее копия оказалась на ленте непосредственно перед словом m .5.

Управляющая головка отправляется к символу *, стоящему следом за словом m , азатем ищет следующую звездочку, на место которой записывает символ, запомненный изнайденной на этапе 4 клетки таблицы переходов m. Затем переходит к соседней клетке всоответствии с запомненным тогда же сигналом протяжки.6. Если в ячейке, оказавшейся перед управляющей головкой, записан символ *, тоцепочка @@...@ m * (последний символ этой цепочки как раз и оказался передуправляющей головкой) переписывается на одну ячейку левее.

Управляющая головкавозвращается к ячейке, перед которой она находилась перед переписью, и в эту ячейкузаписывается Λ (символ пустоты)247. Если состояние, в которое перешла моделируемая машина отлично от еезаключительного состояния, то переходим к этапу 2.8. Стоп.Существование универсальной машины Тьюринга непосредственно вытекает изгипотезы Тьюринга. Однако, как видно из приведенной нами схемы работы, построениетакой машины может быть осуществлено непосредственно - без привлечения этойгипотезы. Такое построение можно рассматривать как дополнительное обоснованиеистинности гипотезы Тьюринга.ЛИТЕРАТУРА1.

А.А.Марков, Н.М.Нагорный. Теория алгорифмов. - М., ФАЗИС, 1996.2. Б.А.Трахтенброт. Алгоритмы и вычислительные автоматы. - М., Сов. Радио, 1974.3. Э.З.Любимский, В.В.Мартынюк, Н.П.Трифонов. Программирование. - М., Наука,1980.4. А.И.Мальцев. Алгоритмы и рекурсивные функции. - М., Наука, 1986.25СОДЕРЖАНИЕ1. О ЗАДАЧЕ ОБРАБОТКИ ИНФОРМАЦИИ...............................................................................................32.

ПРОЦЕССЫ ОБРАБОТКИ ИНФОРМАЦИИ И АЛГОРИТМЫ..........................................................52.1. АЛГОРИТМ ЕВКЛИДА.............................................................................................................................52.2. СВОЙСТВА АЛГОРИТМОВ.....................................................................................................................63. АЛГОРИТМЫ И ОТОБРАЖЕНИЯ.............................................................................................................74. ВЫЧИСЛИМЫЕ ФУНКЦИИ И ТЕЗИС ЧЕРЧА....................................................................................105.

ФОРМАЛИЗАЦИЯ АЛГОРИТМА.............................................................................................................125.1. МАШИНА ТЬЮРИНГА...........................................................................................................................135.1.1. ОБОСНОВАНИЕ ГИПОТЕЗЫ ТЬЮРИНГА....................................................................................175.2.

НОРМАЛЬНЫЕ АЛГОРИТМЫ МАРКОВА .........................................................................................186. САМОПРИМЕНИМОСТЬ И ПРОБЛЕМА ПРИМЕНИМОСТИ........................................................227. УНИВЕРСАЛЬНАЯ МАШИНА ТЬЮРИНГА........................................................................................24ЛИТЕРАТУРА....................................................................................................................................................25СОДЕРЖАНИЕ ................................................................................................................................................2626.

Характеристики

Тип файла
PDF-файл
Размер
303,48 Kb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6485
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее