M. Hargittai, I. Hargittai - Symmetry through the Eyes of a Chemist (793765), страница 57
Текст из файла (страница 57)
R. R. Woodward, R. Hoffmann, “Stereochemistry of Electrocyclic Reactions.”J. Am. Chem. Soc. 1965, 87, 395–397.15. S. Wilkinson, “Woodward and Hoffmann’s 1965 Paper Set Rules for Outcomeof Many Organic Reactions.” Chem. Eng. News 2003, 81(4), 59.16. Woodward, Hoffmann, The Conservation of Orbital Symmetry.17. L. Salem, Electrons in Chemical Reactions: First Principles, WileyInterscience, New York, 1982.18. Ibid.19. B. Solouki, H. Bock, “Photoelectron Spectra and Molecular Properties.59. Ionization Energies of Disulfur Dihalides and Isomerization SurfacesXSSX<=> SSX2 .” Inorg. Chem.
1977, 16(3), 665–669.20. M. C. Müller-Rösing, A. Schulz, M. Hargittai, “Structure and Bondingin Silver Halides. A Quantum Chemical Study of the Monomers: Ag2 X,AgX, AgX2 , and AgX3 (X = F, Cl, Br, I).” J. Am. Chem. Soc. 2005, 127,8133–8145.21. I. H. Williams, “Interplay of Theory and Experiment in the Determination ofTransition-State Structure.” Chem.
Soc. Rev. 1993, 22(4), 277–283.22. H. Eyring, M. Polanyi, “Simple Gas Reactions.” Z. Phys. Chem. B, 1931,12, 279–311; H. Eyring, “Activated Complex in Chemical Reactions.”J. Chem. Phys. 1935, 3, 107–115; H. Eyring, “The Activated Complexand the Absolute Rate of Chemical Reactions.” Chem. Rev. 1935, 17,65–77.23.
K. N. Houk, Y. Li, J. D. Evanseck, “Transition Structures of HydrocarbonPericyclic-Reactions.” Angew. Chem. Int. Ed. Engl. 1992, 31, 682–708.24. Ibid.3667 Chemical Reactions25. Williams, Chem. Soc. Rev. 277–283.26. Eyring, Polanyi, Z. Phys. Chem. B, 279–311.27. M. G. Evans, M. Polanyi, “Some Applications of the Transition State Methodto the Calculation of Reaction Velocities, Especially in Solution.” Trans.Faraday Soc. 1935, 31, 875–894.28. Structure and Dynamics of Reactive Transition States, Faraday Discuss.Chem. Soc.
1991, 91, 1–496.29. E. R. Lovejoy, S. K. Kim, and C. B. Moore, “Observation of Transition-StateVibrational Thresholds in the Rate of Dissociation of Ketene.” Science, 1992,256, 1541–1544.30. A. H. Zewail, “Laser Femtochemistry.” Science, 1988, 242, 1645–1653.31. Ibid.32. A. H. Zewail, Femtochemistry, World Scientific, Singapore, 1994.33. M. Kimple, W. Castleman, Jr. (eds.) Femtochemistry VII: Fundamental Ultrafast Processes in Chemistry, Physics, and Biology, Elsevier, Amsterdam,2006.34.
M. M. Martin, J. T. Hynes (eds.), Femtochemistry and Femtobiology: UltrafastEvents in Molecular Science, Elsevier, Amsterdam, 2004.35. Williams, Chem. Soc. Rev. 277–283.36. Bader, Can. J. Chem. 1164–1175.37. Bader et al., Angew. Chem. Int. Ed. Engl. 620–631.38. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology andElementary Processes.39. Ibid.40. Bader, Can. J. Chem. 1164–1175.41. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology andElementary Processes.42.
Bader, Can. J. Chem. 1164–1175.43. Fukui, in Molecular Orbitals in Chemistry, Physics and Biology.44. Fukui, Theory of Orientation and Stereoselection.45. Woodward, Hoffmann, The Conservation of Orbital Symmetry.46. Woodward, Hoffmann, Angew. Chem. Int. Ed. Engl. 781–853.47.
K. Fukui, T. Yonezawa, and H. Shingu, “A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons.” J. Chem. Phys. 1952, 20, 722–725.48. Fukui, in Molecular Orbitals in Chemistry, Physics and Biology.49. Fukui, Theory of Orientation and Stereoselection.50. K. Fukui, “Role of Frontier Orbitals in Chemical Reactions.” Science, 1982,218, 747–754.51. Woodward, Hoffmann, J. Am. Chem. Soc. 395–397.52.
R. Hoffmann, R. B. Woodward, “Selection Rules for Concerted CycloadditionReactions.” J. Am. Chem. Soc. 1965, 87, 2046–2048.53. R. B. Woodward, R. Hoffmann, “Selection Rules for Sigmatropic Reactions”J. Am. Chem. Soc. 1965, 87, 2511–2513.References36754. Salem, Electrons in Chemical Reactions: First Principles.55. F. Hund, “Interpretation of the Spectra of molecules.” Z. Phys. 1927, 40,742–764; “Interpretation of the spectra of molecules. II.” 1927, 42, 93–120;“Molecular Spectra.” 1928, 51, 759–796.56. R. S.
Mulliken, “The assignment of quantum numbers for electrons inmolecules. I.” Phys. Rev. 1928, 32, 186–222.57. J. von Neumann and E. Wigner, “Über das Verhalten von Eigenwerten beiadiabatischen Prozessen.” Phys. Z. 1929, 30, 467–470; E. Teller, “Crossing ofPotential Surfaces.” J. Phys. Chem. 1937, 41, 109–116.58. Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View.59. Halevi, Helv.
Chim. Acta 2136–2151.60. J. Katriel, E. A. Halevi, “Orbital Correspondence Analysis in MaximumSymmetry—Formulation and Conceptual Framework.” Theor. Chim. Acta1975, 40, 1–15.61. T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry,Third Edition, Harper & Row, New York, 1987.62. H. C. Longuet-Higgins, E. W. Abrahamson, “The Electronic Mechanism ofElectrocyclic Reactions.” J.
Am. Chem. Soc. 1965, 87, 2045–2046.63. F. A. Cotton, Chemical Applications of Group Theory, Second Edition, WileyInterscience, New York, 1971.64. Halevi, Orbital Symmetry and Reaction Mechanisms: The OCAMS View.65. Halevi, Helv. Chim. Acta 2136–2151.66. R. W. Carr, Jr., W. D. Walters, “The Thermal Decomposition of Cyclobutane.”J. Phys. Chem., 1963, 67, 1370–1372.67. R.
Hoffmann, S. Swaminathan, B. G. Odell, and R. Gleiter, “A PotentialSurface for a Nonconcerted Reaction. Tetramethylene.” J. Am. Chem. Soc.1970, 92, 7091–7097; G. A. Segal, “Organic Transition States. III. An abInitio Study of the Pyrolysis of Cyclobutane via the Tetramethylene Diradical.” J. Am. Chem. Soc.
1974, 96, 7892–7898; H. E. O’Neal and S. W.Benson, “The Biradical Mechanism in Small Ring Compound Reactions. ”J. Phys. Chem. 1968, 72, 1866–1887.68. S. Pedersen, J. L. Herek, A. H. Zewail, “The Validity of the “Diradical”Hypothesis: Direct Femtosecond Studies of the Transition-State Structures.”Science, 1994, 266, 1359–1364; J. C. Polanyi, A. H. Zewail, “Direct Observation of the Transition State.” Acc.
Chem. Res. 1995, 28, 119–132.69. Y. Dou, Y. Lei, A. Li, Z. Wen, B. R. Torralva, G. V. Lo, R. E. Allen, “DetailedDynamics of the Photodissociation of Cyclobutane.” J. Phys. Chem. A, 2007,111, 1133–1137.70. Lowry, Richardson, Mechanism and Theory in Organic Chemistry.71. Halevi, Helv. Chim. Acta 2136–2151.72. F. Bernardi, M. Olivucci, J. J. W. McDuall, M. A. Robb, “Diabatic Surfacesfor Two-Bond Addition Reactions. Role of Resonance Interaction.” J.
Am.Chem. Soc. 1987, 109, 544–553.73. Fukui, Yonezawa, Shingu, J. Chem. Phys. 722–725.74. Lowry, Richardson, Mechanism and Theory in Organic Chemistry.3687 Chemical Reactions75. Houk et al., Angew. Chem. Int. Ed. Engl. 682–708.76. S. Sakai, “Theoretical Analysis of Concerted and Stepwise Mechanisms ofDiels–Alder Reaction Between Butadiene and Ethylene.” J. Phys. Chem.
A,2000, 104, 922–927.77. E. W.-G. Diau, S. De Feyter, A. H. Zewail, “Femtosecond Dynamics of RetroDiels–Alder Reactions: the Concept of Concertedness.” Chem. Phys. Lett.1999, 304, 134–144.78. Sakai, J. Phys. Chem. A 922–927.79. Woodward, Hoffmann, The Conservation of Orbital Symmetry.80. R. E. K. Winter, “The Preparation and Isomerization of cis- and trans-3,4-Dimethylcyclobutene.” Tetrahedron Lett. 1965, 6, 1207–1212.81.
Lowry, Richardson, Mechanism and Theory in Organic Chemistry.82. Ibid.83. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology andElementary Processes.84. Ibid.85. K. Hsu, R. J. Buenker, S. D. Peyerimhoff, “Theoretical Determination ofthe Reaction Path in the Prototype Electrocyclic Transformation betweenCyclobutene bnd cis-Butadiene. Thermochemical Process.” J. Am. Chem. Soc.1971, 93, 2117–2127.86. Pearson, Symmetry Rules for Chemical Reactions, Orbital Topology andElementary Processes.87.
Houk et al., Angew. Chem. Int. Ed. Engl. 682–708.88. C. S. Lopez, O. N. Faza, A. R. de Lera, “Electrocyclic Ring Opening of cisBicyclo[m.n.0]alkenes: The Anti-Woodward–Hoffmann Quest.” Chem. Eur.J. 2007, 13, 5009–5017.89. Woodward, Hoffmann, The Conservation of Orbital Symmetry.90. Ibid.91. Lowry, Richardson, Mechanism and Theory in Organic Chemistry.92.
A. C. Day, “Aromaticity and the Generalized Woodward-Hoffmann Rules forPericyclic Reactions.” J. Am. Chem. Soc. 1975, 97, 2431–2438.93. H. E. Zimmermann, “On Molecular Orbital Correlation Diagrams, the Occurrence of Möbius Systems in Cyclization Reactions, and Factors Controlling Ground- and Excited-State Reactions.
I.” J. Am. Chem. Soc. 1966, 88,1564–1565; “Molecular Orbital Correlation Diagrams, Mobius Systems, andFactors Controlling Ground- and Excited-State Reactions. II.” J. Am. Chem.Soc. 1966, 88, 1566–1567; “Möbius-Hückel Concept in Organic Chemistry.Application of Organic Molecules and Reactions.” Acc. Chem. Res.
1971, 4,272–280.94. M. J. S. Dewar, “A Molecular Orbital Theory of Organic Chemistry–VIII:Aromaticity and Electrocyclic Reactions.” Tetrahedron Suppl. 1966, 8, 75–92;“Aromaticity and Pericyclic Reactions.” Angew. Chem. Int. Ed. Engl. 1971,10, 761–776; The Molecular Orbital Theory of Organic Chemistry, McGrawHill, New York, 1969.References36995. V. I. Minkin, M. N. Glukhovtsev, B. Ya.