Multidimensional local skew-fields (792481), страница 22
Текст из файла (страница 22)
Bq2 = 0. Really,its discriminant must be equal to q12 p21 l2 , l ∈ Z. But D = q12 j 2 p21 + 4q12 p21 j(j − n1 ) +4q13 p1 (qa − 1)(3j + n1 ), hence 0 < p21 q12 (j − n1 )2 = q12 p1 (qa − 1)(3j + n1 ) < 0, acontradiction. Thus we have proved the case B) 2) b) ii) i’).If n1 |m1 or (m1 /n1 )k1,n1 = k2,m1 , then the solvability of the equation (1.26)for m = nq+1 , a = anq +m1 +i(α)−1 , b = cnq +m1 +i(α)−1 doesn’t depend on coefficientsanq +n1 +i(α)−1 (cnq +n1 +i(α)−1 ). In this case for almost all q fnq can be chosen so that theequation (1.26) is solvable for m = nq+1 , and fmq so that equation (1.26) is solvablefor m = mq+1 .
Not very complicated modification of all arguments, mentioned before,leads us to the conclusion, that α is conjugated to β:β(u) = ξu + Az j ,β(z) = z + Bz i(α) + B2 z i(α)+n1 + B3 z i(α)+m1 + B4 z i(α)+2m1 + Bq z i(α)+m1 + Bq2 z i(α)+nq2 ,where Bq = cuk2,mq −2+qa or equals to zero in accordance with equality to zero of theexpressionq1 (1 − qa − (q − 1)p1 ),B4 = Bq for q = 1, Bq2 = cuk1,nq2 −2+qa or equals to zero in accordance with equality tozero of the expression∂∂(b)/j − b (A)/(jA) + (nq2 − j)p1 u−1 b/(jq1 ) + a = 0∂u∂u103with b = nq2 −1 uk1,nq2 −1 +k2,m1 −2+qa , a = (k2,m1 − 2 + qa )uk1,nq2 −1 +k2,m1 −3+qa + (1 − i(α) +k+k−3+qa(p1 − qa + k1,nq2 −1 )/j, i.e.nq2 −2 )u 1,nq2 −1 2,m1−n21 p1 −q1 (p1 (2j+q1 (q2 −3)2 )−(j+q1 (q2 −2))(qa −1))+n1 q1 (−1−2p1 (q2 −3)+qa ) (1.36)This equation has no solutions in integers by the same reasons as (1.35), wherefrom Bq2 = 0 (see case B) 2) b) ii) ii’) ).In the case 2)m1 < n1 , and since j |q1 , we can apply here the arguments from the case 1).
Then theresult would coincide with the result of the previous paragraph.In the case 3)m1 < n1 , but j|q1 , so we rewrite the formula (1.29) for the conjugation fmq , q ≥ 1 inthe following way:α fmq (u) = ξu + Az j + cmq +m1 +j z mq +m1 +j + . . . + ξxmq z mq +mq Bxmq z mq +j +∂(xmq )Az mq +j +∂u1 ∂2∂2(xmq )A2 z mq +2j + CmB 2 xmq z mq +2j + mq B (xmq )Az mq +2j +q22 ∂u∂umq B2 xmq z mq +m1 +j + mq B3 xmq z mq +n1 +j + . . .∂(A)xmq z mq +j +∂u+ . . . + cmq +m1 +j z mq +m1 +j + . .
.fmq α (u) = ξu + ξxmq z mq + Az mq + Az j +jymq Az mq +j + cnq +j z nq +jα fmq (z) = z+Bz i(α) +B2 z i(α)+m1 +B3 z i(α)+n1 +amq +m1 +i(α)−1 z mq +m1 +i(α) +. . .+ymq z mq +1 +2∂mq +i(α)mq +i(α) 1 ∂2+(mq +1)Bymq z+(ymq )A2 z mq +2i(α)−1 +CmB 2 ymq z mq +2i(α)−1 +(ymq )Azq +12∂u2 ∂u∂(mq + 1)B (ymq )Az mq +2i(α)−1 + . . . + (mq + 1)B − 2ymq z mq +m1 +i(α) + .
. .∂ufmq α (z) = z + ymq z mq +1 + Bz i(α) + B2 z i(α)+m1 + B3 z i(α)+n1 +∂∂(B)xmq z mq +i(α) + i(α)ymq Bz mq +i(α) +(B2 )xmq z i(α)+m1 +mq +∂u∂uanq +i(α)−1 z nq +i(α) + . . . + amq +m1 +i(α)−1 z mq +m1 +i(α) + (i(α) + m1 )ymq B2 z m1 +mq +i(α) + . . .Hence follows, that two cases are possible:a’) the solvability of the equation (1.26) for m = mq + m1 doesn’t depend oncoefficients cnq +j , .
. . , cmq +m1 , anq +j , . . . , an1 +m1 , that is it depends only on cmq +m1 +j ,amq +m1 +i(α)−1 (and it is equal to −p1 + qa − 2 = q1 (qa − 1)/j).104b’) the solvability of the equation (1.26) for m = mq + m1 depends on coefficientscnq +j , . . . , cmq +m1 , anq +j , . . . , an1 +m1 , i.e.
−p1 + qa − 2 = q1 (qa − 1)/j.In the case a’), repeating the proof as in the previous cases, we get the same resultas in the case 2) (it corresponds to a case B) 2) c) ii) i’)).In the case b’) the conjugations fmq determine the solvability of the equation (1.26)for m = nq , and conjugations fnq — for m = mq+1 . Here, in this case of m = nq , as seenfrom the formula above, can exist not more than two q — solutions of the equation∂∂(b)/j − b (A)/(jA) + (nq2 − j)p1 u−1 b/(jq1 ) + a = 0∂u∂u2∂∂2qa2+ Cmu2qa −2 p21 /q12 uk2,mq + mq p1 /q1 u2qa −1 ∂u(uk2,mq ),with b = 2−1 ∂u2 (uk2,mq )uq∂22qa2(p1 −qa +k2,mq )/j+Cmu2qa −2 p21 /q12 uk2,mq −1 (p1 −qa +k2,mq )/j+a = 2−1 ∂u2 (uk2,mq −1 )uq +1∂(uk2,mq −1 )(p1 − qa + k2,mq )/j, i.e.(mq + 1)p1 /q1 u2qa −1 ∂u(p21 (−1+q−q1 (−1+q−2q 2 +qq1 ))−qq12 (qa −1)+p1 q1 (1−3q−(q−1)qq1 +qqa )) = 0 (1.37)and in the case m = mq+1 not more than (mq+1 − nq )/j + 1 = q1 /j = w q — solutionsof the appropriate equation∂∂(b)/j − b (A)/(jA) + (nq2 − j)p1 u−1 b/(jq1 ) + a = 0∂u∂u(1.38)Thus, α is conjugated to β:β(u) = ξu + Az j ,β(z) = z + Bz i(α) + B2 z i(α)+m1 + Bqn ,1 z i(α)+nq1 + Bqn ,2 z i(α)+nq2 + Bqm ,1 z i(α)+mq1 + .
. . +Bqm ,w z i(α)+mqw ,k−2+qawhere Bqn ,i = ci uk1,nqi −2+qa , Bqm ,j = cj u 2,mqjor 0 depending on solvability ofcorresponding equations (it is the case B) 2) c) ii) ii’)).In the case c),when q1 = j, we use arguments from both: the previous case and the case a), and getfrom there, that α is conjugated to β:β(u) = ξu + Az j ,β(z) = z + Bz i(α) + B2 z 2i(α)−1 + B3 z 3i(α)−2 + Bqm,1 ,1 z i(α)+q0 q1 + Bqm,1 ,2 z i(α)+q2 q1 +Bqm,1 ,3 z i(α)+q3 q1 + Bqm,2 ,1 z i(α)+q1 q1 + Bqm,2 ,2 z i(α)+q2 q1 + Bqm,2 ,3 z i(α)+q3 q1 ,−1where B2 = cb2 u−p1 −1+qa , B3 = cb3 u−p1 +2qa −2 , Bqm,1 ,i = cbqm ,1 ,i u−p1 q1 (qi q1 −j)+2qa −2 ,Bqm,2 ,j = cbqm ,2 ,j u−p1 qj +qa −1 or 0 depending on solvability of corresponding equations∂∂(b)/j − b ∂u(A)/(jA) + (nq2 − j)p1 u−1 b/(jq1 ) + a = 0. If we denote as b50 , a50 b and∂ua in (1.37), then the appropriate b, a, b , a for two equations are equal tokmq ,1 −p1 +1−2+qaub = b50 + c−2a mq u105−p1 +qa −2+qa kmq ,1 −1a = a50 + c−2u(p1 − qa + k1,mq )/ja (1 − i(α) + mq − m1 )u(1.39)kmq ,2 −p1 +1−2+qaub = b50 + c−2a mq u−p1 +qa −2+qa kmq ,2 −1a = a50 + c−2u(p1 − qa + k2,mq )/ja (1 − i(α) + mq − m1 )u(1.40)where ca is a constant for the coefficient A, and the rest notations are taken from thecase a).
By direct calculations it is not difficult to show, that these equations are notsolvable.The proof of the last statement in the theorem is similar to the proof of the statement in the theorem 2.The theorem is proved.2106Bibliography[1] A. A. Albert. Normal division algebras of degree pl over f of characteristic p.Trans. Amer. Soc., 40:112–126, 1936.[2] G.
Azumaya. On maximally central algebras. Nagoya J.Math., 2:119–150, 1951.[3] R. Camina. Subgroups of the nottingham group. J.Algebra, 196:101–113, 1997.[4] P.M. Cohn. Skew-fields. Cambridge University Press, 1997.[5] M. de Sautoy and I. Fesenko. Where the wild things are: ramification groups andthe nottingham group. preprint.[6] E.E.
Demidov. The Kadomzev-Petviashvili Hierarchy and Shottki’s problem. Independent Moscow University, Math. college, Moscow, 1995.[7] T. Fimmel and A.N. Parshin. An introduction to the higher adelic theory. bookin preparation.[8] A. Gurevich. Description of Galois groups of local fields with the aid of powerseries. PhD thesis, Humboldt University Berlin, 1998.[9] B. Jacob and A. Wadsworth. Division algebras over henselian fields. J.Algebra,128:126–179, 1990.[10] S.A.
Jennings. Substitution groups of formal power series. Canad. J. Math.,41:325–340, 1954.[11] D. L. Johnson. The group of formal power series under substitution. J.Austral.Math. Soc. (Series A), 45:298–302, 1988.[12] B. Klopsch. Normal subgroups and automorphisms of substitution groups of formalpower series. PhD thesis, Oxford University, 1997.[13] F. Laubie. Extensions de lie et groups d’automorphismes de corps locaux. Comp.Math., 67:165–189, 1988.107[14] F. Laubie and M. Saine. Ramification of automorphisms of k((t)). J.Numbertheory, 63:143–145, 1997.[15] V. G. Lomadze.
On residues in algebraic geometry. Izv. Akad. Nauk SSSR, Ser.Mat., 45(6):1258–1287, 1981.[16] M. Mulase. Category of vector bundles on algebraic curves and infinite dimensionalgrassmanians. Intern. J. of Math., 1(3):293–342, 1990.[17] A. N. Parshin. Infinite grassmanians and vector bundles. preprint.[18] A. N. Parshin. Krichever correspondence for algebraic surfaces. preprint TUBraunschweig, Bericht 99/17.
e-print math.AG/9911097.[19] A. N. Parshin. On the arithmetic of two-dimensional schemes. i. distributions andresidues. Izv. Akad. Nauk SSSR, Ser. Mat., 40:695–729, 1976.[20] A. N. Parshin. Abelian coverings of arithmetic schemes. Soviet Math. Dokl.,19:1438–1442, 1978.[21] A. N. Parshin. Brauer group. Trud. mat. Inst. AN SSSR, 165:143–170, 1984.English transl. in Proceedings of the Steclov Institute of Mathematics 1985, Issue3.[22] A. N.