Диссертация (786472), страница 23
Текст из файла (страница 23)
Launder B. E., Reece G. J., Rodi W. Progress in the Development of aReynolds-Stress Turbulent Closure. // J. of Fluid Mechanics, Vol. 68(3), pp. 537-566, 1975.119. S.J. Lawson, G.N. Barakos Review of numerical simulations for high-speed,turbulent cavity flows. // Progress in Aerospace Sciences. V.47, 2011, pp.
186–216 .120. Launder B.E., Spalding D.B. The numerical computation of turbulent flows //Computer Meth. Appl. Mech. Engn., 1974, 3, 3, 269-289.121. Lee J., Sloan M.L., Paynter G.C. Lag model for turbulent boundary layersover rough bleed surfaces // J. of Propulsion and Power. 1994. V. 10. № 4. P. 562–568.122. Liou M.S., Steffen C.J.Jr. A New Flux Splitting Scheme.
// J. ofComputational Physics, Vol. 107, 1993, pp. 23-39.123. Lillard R.P., Olsen M.E., Oliver A.B., Blaisdell G.A. et al. The lagRSTModel: a Turbulence Model for Non-Equilibrium Flows. // AIAA Pap. № 2012-444. 2012.37 p.124. Lillard R.P. Turbulence modeling for shock wave/turbulent boundary layerinteractions, PhD Thesis, Purdue University, 2011.125. M.
Loginov, N. Adams, and A. Zheltovodov. Large-eddy simulation ofshockwave/turbulent-boundary-layer interaction. // J. Flui. Mech, 565 (2006), 135–69.126. Louis N. Cattafesta III, Qi Song, David R. Williams, Clarence W. Rowley,Farrukh S.
Alvi .Active control of flow-induced cavity oscillations. // Progress inAerospace Sciences. V.44, 2008, pp. 479–502.160127. Mahapatra D., Jagadeesh G. Studies on unsteady shock interactions near ageneric scramjet inlet. // AIAA J., Vol. 47, No. 9, September 2009, DOI: 10.2514/1.41954.128. K. Mahesh, S. K.
Lele, P. Moin, The influence of entropy fluctuations on theinteraction of turbulence with a shock wave. // J. Fluid Mech., 1997, 334, 353-379.129. K. Mahesh, P. Moin, S. K. Lele, The interaction of a shock wave with aturbulent shear flow. // Thermosciences Division, Department of Mechanical Engineering,Stanford University, Report No. TF-69, Stanford, CA, 1996.130.
Martin M. P. Preliminary DNS Database of Hypersonic Turbulent BoundaryLayers. // AIAA Pap. 2003-3726, 2003.131. Mendonça F., Allen R., de Charentenay J., Kirkham D. CFD prediction ofnarrowband and broadband cavity acoustics at M=0.85. // AIAA Pap. 2003-33032003,American Institute of Aeronautics and Astronautics, 2003.132. Menter F.R., Zonal two-equation k-ω models for aerodynamics flow // AIAAPap. 93-2906, 1993.133. Michalak C., Ollivier-Gooch C. Accuracy preserving limiter for the high-orderaccurate solution of the Euler equations // J.
of Computational Physics, Vol. 228, 2012, pp.8693-9711.134. Murakami S., Mochida A., Kondo K., Ishida Y., Tsuchiya M. Development ofnew k-ε model for flow and pressure fields around bluff body // J. Wind Eng. Ind. Aerodyn.,1998, 67&68, 169-182.135. Nakayama A., Koyama H., A wall law for turbulent boundary layers inadverse pressure gradients // AIAA J., 1984, 22, 10, 1386-1389.136. C. Ozalp, A.
Pinarbasi, B. SahinExperimental measurement of flow pastcavities of different shapes // Experimental Thermal and Fluid Science. V. 34, 2010, pp.505–515.137. M.E. Olsen, T. J. Coakley. The Lag Model, a Turbulence Model for NonEquilibrium Flows // AIAA Pap., 2001-2664, 2001, 11p.138. M. E. Olsen, T. J. Coakley, and R. P. Lillard. The lag model applied to highspeed flows // 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January2005.
AIAA 2005-0101.161139. Papp Jr.W.J., Maher M.H., Baker R.F. Use of shredded tires in the subbaselayers of asphalt pavements //ASTM STP 1275, Testing Soil Mixed with Waste orRecycled Materials, 1997, 286–298.140. Park C.H., Park S.O. On the limiters of two-equation turbulence models // Int.J. Comput. Fluid Dyn., 2005, 19, 1, 79–86.141. Patel V.C., A united view of the law of the wall using mixing length theory //Aeronautical Quarterly, 1973, 24, 55-70.142. Pope S.B. A more general effective-viscosity hypothesis // Journal of FluidMech., 72, 331-340, 1975.143. Pruett C. D., Chang C-L Spatial Direct Numerical Simulation of High-SpeedBoundary- Layer Flows Part II: Transition on a Cone in Mach 8 Flow // Theor. Comput.Fluid Dyn., 1995, 7, 397-424.144. Revell A.J., Benhamadouche S., Craft T., Laurence D.
A stress-strain lag eddyviscosity model for unsteady mean flow // Int. J. of Heat and Fluid Flow. 2006. V. 27. №5.P. 821-830.145. Reyhner T.A. Finite difference solutions of the compressible turbulentboundary layer equations. Proc. of Comp. of Turbulent Boundary Layers. StanfordConference. 1968.
V. 1. P. 375–383.146. Rockwell D. and Naudascher E. Review – self-sustaining oscillations of flowpast cavities // J. Fluids Eng. Vol. 100, 1978, pp. 152-65.147. Rossiter J.E. Wind tunnel experiments on the flow over rectangular cavities atsubsonic and transonic speeds. Technical report N ARC R&M 3438. Aeronautical ResearchCouncil , UK, 1964.148. Roy C.
J., Blottner F. G. Review and Assessment of Turbulence Models forHypersonic Flows: 2D/Axisymmetric Cases // AIAA Pap. 2006-0713, 2006.149. S.Sarkar, G. Erlebacher, M.Y. Hussaini, H.O. Kreiss. The analysis andmodeling of dilatational terms in compressible turbulence // J. Fluid Mech, 1991, V. 227, P.473-493.150. Schmid S., Lutz T., Kramer E. Numerical Simulation of Flow field Aroundthe Stratospheric Observatory for Infrared Astronomy. Note on Numerical fluid mechanicsand multidisciplinary design.
Vol. 96, New results in Numerical and Experimental FluidMechanics VI, NNFM 96, Springer 2007, pp. 364-371.162151. Schumann, U. Realizability of reynolds-stress turbulence models // Physics ofFluids 20: pp. 721–725, 1977.152. Seiner J.M., Norum T.D. Experiments of shock associated noise on supersonicjets // AIAA Pap. 79-1526, 1979.153. Seiner J.M., Norum T.D.
Aerodynamic aspects of shock containing jet plumes// AIAA Pap. 80-0965, 1980.154. Settles G.S., Dodson L.J. Hypersonic Shock/Boundary-Layer InteractionDatabase // NASA Contractor Report 177577, 1991.155. Settles G.S., Fitzpatrick T.J., Bogdonoff S.M. Detailed Study of Attached andSeparated Compression Corner Flowfield in High Reynolds Number Supersonic Flow //AIAA J., 1979, 17, 6.156. Shih T. S., Lumley J. L. Modelling of pressure correlation terms in reynoldsstress and scalar flux equations. Technical Report FDA-85-3, Cornell University, Ithaca,N.Y., 1985.157.
Shu C.-W., Osher S., Efficient Implementation of Essentially Non-OscillatoryShock-Capturing Schemes II // J. of Comput. Phys., Vol. 83, 1989, pp. 32–78.158. Sinha, K. Mahesh, G.V. Candler. Modeling shock unsteadiness in shockturbulence interaction // Phys. Fluids, 2003, 15, 2290-2297.159. Spalart P.
R., Allmaras S. R. A One-Equation Turbulence Model forAerodynamic Flows. Recherche Aerospatiale, No. 1, 1994, pp. 5-21.160. Spalart P. R., Rumsey, C. L. Effective Inflow Conditions for TurbulenceModels in Aerodynamic Calculations // AIAA Journal, Vol. 45, No. 10, 2007, pp. 25442553.161. Speziale, C. G. Modelling the pressure gradient-velocity correlation ofturbulence // Phys. of Fluids, 28, pp.
69–71, 1985.162. Speziale, C. G. Second-order closure models for rotating turbulent flows //Quarterly of Applied Mathematics, 45, pp. 721–733, 1987.163. Speziale, C.G., Sarkar, S., Gatski, T.B. Modeling the Pressure-StrainCorrelation of Turbulence: an Invariant Dynamical Systems Approach // Journal of FluidMechanics, Vol. 227, pp. 245-272, 1991.163164.
Stark R., Hagemann G. Current status of numerical flow prediction forseparated nozzle flows. In: 2nd European Conference for Aerospace Sciences (EUCASS),2007, Brussels, Belgium.165. Sutherland W. The viscosity of gases and molecular force. PhilosophicalMagazine, S., 1893, 5, 36, pp. 507-531.166. Thakur S.S., Wright J.A., Shyy W., Liu J., Ouyang, H., Vu T., Developmentof pressure-based composite multigrid methods for complex fluid flows // Prog.
AerospaceSci., 1996, 32, 4, 313-373.167. E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.Springer, 2009.168. Unalmis O.H., Clemens N.T. Dolling D.S.Cavity Oscillation Mechanismsin High-Speed Flows // AIAA J. 2004, Vol. 42, N 10, pp. 2035-2041.169. V.K. Veera, K. Sinha, Modeling the effect of upstream temperaturefluctuations on shock/homogeneous turbulence interaction // Phys. Fluids, 2009, 21,025101.170. Venkatakrishnan V. Convergence to Steady State Solutions of the EulerEquations on Unstructured Grids with Limiters // J. of Comput. Phys., Vol.
118, 1995,pp.120-130.171. Wallin S., Johansson A.V. An explicit algebraic Reynolds stress model forincompressible and compressible turbulent flows // J. of Fluid Mech., 403, 89-132, 2000.172. Weiss J.M., Maruszewski J.P., Smith W.A.
Implicit solution of preconditionedNavier–Stokes equations using algebraic multigrid // AIAA J., Vol. 37, No. 1, 1999, pp. 29–36.173. White F.M., Viscous fluid flow, N.Y.:McGraw-Hill, 1974, 523.174. Wilcox D.C. Reassessment of the scale-determining equation for advancedturbulence models // AIAA J., 1988, 26, 11, 1299-1310.175. Wilcox D.C., Dilatation dissipation corrections for advanced turbulencemodels // AIAA J., 1992, 30, 11, 2639-2646.176.