Главная » Просмотр файлов » Medical ultrasonography

Medical ultrasonography (779741), страница 2

Файл №779741 Medical ultrasonography (Medical ultrasonography) 2 страницаMedical ultrasonography (779741) страница 22017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

The frequencies used for medical imaging are generally in the range of 1 to 18 MHz. Higher frequencies have a correspondingly smaller wavelength, and can be used to make sonograms with smaller details. However, the attenuation of the sound wave is increased at higher frequencies, so in order to have better penetration of deeper tissues, a lower frequency (3-5 MHz) is used.

Seeing deep into the body with sonography is very difficult. Some acoustic energy is lost every time an echo is formed, but most of it (approximately )is lost from acoustic absorption.

The speed of sound is different in different materials, and is dependent on the acoustical impedance of the material. However, the sonographic instrument assumes that the acoustic velocity is constant at 1540 m/s. An effect of this assumption is that in a real body with non-uniform tissues, the beam become somewhat de-focused and image resolution is reduced.

To generate a 2D-image, the ultrasonic beam is swept. A transducer may be swept mechanically by rotating or swinging. Or a 1D phased array transducer may be use to sweep the beam electronically. The received data is processed and used to construct the image. The image is then a 2D representation of the slice into the body.

3D images can be generated by acquiring a series of adjacent 2D images. Commonly a specialised probe that mechanically scans a conventional 2D-image transducer is used. However, since the mechanical scanning is slow, it is difficult to make 3D images of moving tissues. Recently, 2D phased array transducers that can sweep the beam in 3D have been developed. These can image faster and can even be used to make live 3D images of a beating heart.

Doppler ultrasonography is used to study blood flow and muscle motion. The different detected speeds are represented in color for ease of interpretation, for example leaky heart valves: the leak shows up as a flash of unique color. Colors may alternatively be used to represent the amplitudes of the received echoes.

[edit] Modes of Sonography

Four different modes of ultrasound are used in medical imaging[2]. These are:

  • A-mode: A-mode is the simplest type of ultrasound. A single transducer scans a line through the body with the echoes plotted on screen as a function of depth. Therapeutic ultrasound aimed at a specific tumor or calculus is also A-mode, to allow for pinpoint accurate focus of the destructive wave energy.

  • B-mode: In B-mode ultrasound, a linear array of transducers simultaneously scans a plane through the body that can be viewed as a two-dimensional image on screen.

  • M-mode: M stands for motion. In m-mode a rapid sequence of B-mode scans whose images follow each other in sequence on screen enables doctors to see and measure range of motion, as the organ boundaries that produce reflections move relative to the probe.

  • Doppler mode: This mode makes use of the Doppler effect.

[edit] Doppler sonography

Spectral Doppler of Common Carotid Artery

Colour Doppler of Common Carotid Artery

Sonography can be enhanced with Doppler measurements, which employ the Doppler effect to assess whether structures (usually blood) are moving towards or away from the probe, and its relative velocity. By calculating the frequency shift of a particular sample volume, for example a jet of blood flow over a heart valve, its speed and direction can be determined and visualised. This is particularly useful in cardiovascular studies (sonography of the vasculature system and heart) and essential in many areas such as determining reverse blood flow in the liver vasculature in portal hypertension. The Doppler information is displayed graphically using spectral Doppler, or as an image using color Doppler (directional Doppler) or power Doppler (non directional Doppler). This Doppler shift falls in the audible range and is often presented audibly using stereo speakers: this produces a very distinctive, although synthetic, pulsing sound.

Strictly speaking, most modern sonographic machines do not use the Doppler effect to measure velocity, as they rely on pulsed wave Doppler (PW). Pulsed wave machines transmit pulses of ultrasound, and then switch to receive mode. As such, the reflected pulse that they receive is not subject to a frequency shift, as the insonation is not continuous. However, by making several measurements, the phase change in subsequent measurements can be used to obtain the frequency shift (since frequency is the rate of change of phase). To obtain the phase shift between the received and transmitted signals, one of two algorithms is typically used: the Kasai algorithm or cross-correlation. Older machines, that use continuous wave (CW) Doppler, exhibit the Doppler effect as described above. To do this, they must have separate transmission and reception transducers. The major drawback of CW machines, is that no distance information can be obtained (this is the major advantage of PW systems - the time between the transmitted and received pulses can be converted into a distance with knowledge of the speed of sound).

In the sonographic community (although not in the signal processing community), the terminology "Doppler" ultrasound, has been accepted to apply to both PW and CW Doppler systems despite the different mechanisms by which the velocity is measured.

[edit] Microbubbles

The use of microbubble contrast media in medical sonography to improve ultrasound signal backscatter is known as contrast-enhanced ultrasound. This technique is currently used in echocardiography, and may have future applications in molecular imaging and drug delivery.

[edit] Strengths of sonography

  • It images muscle and soft tissue very well and is particularly useful for delineating the interfaces between solid and fluid-filled spaces.

  • It renders "live" images, where the operator can dynamically select the most useful section for diagnosing and documenting changes, often enabling rapid diagnoses.

  • It shows the structure of organs.

  • It has no known long-term side effects and rarely causes any discomfort to the patient.

  • Equipment is widely available and comparatively flexible.

  • Small, easily carried scanners are available; examinations can be performed at the bedside.

  • Relatively inexpensive compared to other modes of investigation (e.g. computed X-ray tomography, DEXA or magnetic resonance imaging).

[edit] Weaknesses of ultrasonic imaging

  • Sonographic devices have trouble penetrating bone. For example, sonography of the adult brain is very limited.

  • Sonography performs very poorly when there is a gas between the transducer and the organ of interest, due to the extreme differences in acoustic impedance. For example, overlying gas in the gastrointestinal tract often makes ultrasound scanning of the pancreas difficult, and lung imaging is not possible (apart from demarcating pleural effusions).

  • Even in the absence of bone or air, the depth penetration of ultrasound is limited, making it difficult to image structures deep in the body, especially in obese patients.

  • The method is operator-dependent. A high level of skill and experience is needed to acquire good-quality images and make accurate diagnoses.

  • There is no scout image as there is with CT and MR. Once an image has been acquired there is no exact way to tell which part of the body was imaged.

[edit] Risks and side-effects

Ultrasonography is generally considered a "safe" imaging modality.[citation needed] However slight detrimental effects have been occasionally observed (see below). Diagnostic ultrasound studies of the fetus are generally considered to be safe during pregnancy. This diagnostic procedure should be performed only when there is a valid medical indication, and the lowest possible ultrasonic exposure setting should be used to gain the necessary diagnostic information under the "as low as reasonably achievable" or ALARA principle.

The promotion, selling, or leasing of ultrasound equipment for making "keepsake fetal videos" is considered by the US Food and Drug Administration to be an unapproved use of a medical device. Use of a diagnostic ultrasound system for these purposes, without a physician’s order, may be in violation of state laws or regulations.

[edit] Studies on the safety of ultrasound

  • A study at the Yale Medical School found a correlation between prolonged and frequent use of ultrasound and abnormal neuronal migration in mice.[3]

  • A study published in 2001 by a team working at the Karolinska Institute in Stockholm found a correlation between the number of scans received by male fetuses and subsequent left-handedness. [4]

  • A meta-analysis of several ultrasonography studies found no statistically significant harmful effects from ultrasonography, but mentioned that there was a lack of data on long-term substantive outcomes such as neurodevelopment.[5]

[edit] Regulation

Diagnostic sonography is regulated in the USA by the FDA, and world-wide by other national regulatory agencies. The FDA limits acoustic output using several metrics. Generally other regulatory agencies around the world accept the FDA-established guidelines.

The primary regulated metrics are MI (Mechanical Index) a metric associated with the cavitation bio-effect, and TI (Thermal Index) a metric associated with the tissue heating bio-effect. The FDA requires that the machine not exceed limits that they have established. This requires self-regulation on the part of the manufacturer in terms of the calibration of the machine. The established limits are reasonably conservative so as to maintain diagnostic ultrasound as a safe imaging modality.[citation needed]

[edit] History

[edit] United States

Ultrasonic energy was first applied to the human body for medical purposes by Dr. George Ludwig at the Naval Medical Research Institute, Bethesda, Maryland in the late 1940s.[6][7]

The first demonstration of color Doppler was by Geoff Stevenson, who was involved in the early developments and medical use of Doppler shifted ultrasonic energy.[8]

[edit] Sweden

Medical ultrasonography was used 1953 at Lund University by cardiologist Inge Edler and Carl Hellmuth Hertz, the son of Gustav Ludwig Hertz, who was a graduate student at the department of nuclear physics.

Edler had asked Hertz if it was possible to use radar to look into the body, but Hertz said this was impossible. However, he said, it might be possible to use ultrasonography. Hertz was familiar with using ultrasonic reflectoscopes for nondestructive materials testing, and together they developed the idea of using this method in medicine.

The first successful measurement of heart activity was made on October 29, 1953 using a device borrowed from the ship construction company Kockums in Malmö. On December 16 the same year, the method was used to generate an echo-encephalogram (ultrasonic probe of the brain). Edler and Hertz published their findings in 1954.

[edit] Scotland

Parallel developments in Glasgow, Scotland (coincidentally also a major shipbuilding centre) by Professor Ian Donald and colleagues at the Glasgow Royal Maternity Hospital (GRMH) led to the first diagnostic applications of the technique. Donald was an obstetrician with a self-confessed "childish interest in machines, electronic and otherwise", who, having treated the wife of one of the company's directors, was invited to visit the Research Department of boilermakers Babcock & Wilcox at Renfrew, where he used their industrial ultrasound equipment to conduct experiments on various morbid anatomical specimens and assess their ultrasonic characteristics. Together with the medical physicist Tom Brown and fellow obstetrician Dr John MacVicar, Donald refined the equipment to enable differentiation of pathology in live volunteer patients. These findings were reported in The Lancet on 7th June 1958 as "Investigation of Abdominal Masses by Pulsed Ultrasound" - possibly one of the most important papers ever published in the field of diagnostic medical imaging.

At GRMH, Professor Donald and Dr James Willocks then refined their techniques to obstetric applications including fetal head measurement to assess the size and growth of the foetus. With the opening of the new Queen Mother's Hospital on Yorkhill in 1964, it became possible to improve these methods even further. Dr Stuart Campbell's pioneering work on fetal cephalometry led to it acquiring long-term status as the definitive method of study of fetal growth. As the technical quality of the scans was further developed, it soon became possible to study pregnancy from start to finish and diagnose its many complications such as multiple pregnancy, fetal abnormality and placenta praevia. Diagnostic ultrasound has since been imported into practically every other area of medicine.

10


Характеристики

Тип файла
Документ
Размер
435 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее