c7-6 (779520), страница 2

Файл №779520 c7-6 (Numerical Recipes in C) 2 страницаc7-6 (779520) страница 22017-12-27СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Ifyour accuracy requirements are modest, or if your computer budget is large, thenthe technique is highly recommended as one of great generality. In the next twosections we will see that there are techniques available for “breaking the square rootof N barrier” and achieving, at least in some cases, higher accuracy with fewerfunction evaluations.Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press.Programs Copyright (C) 1988-1992 by Numerical Recipes Software.Permission is granted for internet users to make one paper copy for their own personal use.

Further reproduction, or any copying of machinereadable files (including this one) to any servercomputer, is strictly prohibited. To order Numerical Recipes books,diskettes, or CDROMsvisit website http://www.nr.com or call 1-800-872-7423 (North America only),or send email to trade@cup.cam.ac.uk (outside North America).#include "nrutil.h"...n=...Set to the number of sample points desired.sw=swx=swy=swz=0.0;varw=varx=vary=varz=0.0;ss=0.2*(exp(5.0)-exp(-5.0))Interval of s to be random sampled.vol=3.0*7.0*ssVolume in x,y,s-space.for(j=1;j<=n;j++) {x=1.0+3.0*ran2(&idum);y=(-3.0)+7.0*ran2(&idum);s=0.00135+ss*ran2(&idum);Pick a point in s.z=0.2*log(5.0*s);Equation (7.6.7).if (z*z+SQR(sqrt(x*x+y*y)-3.0) < 1.0) {sw += 1.0;Density is 1, since absorbed into definitionswx += x;of s.swy += y;swz += z;varw += 1.0;varx += x*x;vary += y*y;varz += z*z;}}w=vol*sw/n;The values of the integrals (7.6.5),x=vol*swx/n;y=vol*swy/n;z=vol*swz/n;dw=vol*sqrt((varw/n-SQR(sw/n))/n);and their corresponding error estimates.dx=vol*sqrt((varx/n-SQR(swx/n))/n);dy=vol*sqrt((vary/n-SQR(swy/n))/n);dz=vol*sqrt((varz/n-SQR(swz/n))/n);7.7 Quasi- (that is, Sub-) Random Sequences309CITED REFERENCES AND FURTHER READING:Hammersley, J.M., and Handscomb, D.C.

1964, Monte Carlo Methods (London: Methuen).Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).We have just seen that choosing N points uniformly randomly in an ndimensionalspace leads to an error term in Monte Carlo integration that decreases√as 1/ N .

In essence, each new point sampled adds linearly to an accumulated sumthat will become the function average, and also linearly to an accumulated sum ofsquares that will become the variance (equation 7.6.2). The estimated error comesfrom the square root of this variance, hence the power N −1/2 .Just because this square root convergence is familiar does not, however, meanthat it is inevitable. A simple counterexample is to choose sample points that lieon a Cartesian grid, and to sample each grid point exactly once (in whatever order).The Monte Carlo method thus becomes a deterministic quadrature scheme — albeita simple one — whose fractional error decreases at least as fast as N −1 (even fasterif the function goes to zero smoothly at the boundaries of the sampled region, oris periodic in the region).The trouble with a grid is that one has to decide in advance how fine it shouldbe.

One is then committed to completing all of its sample points. With a grid, it isnot convenient to “sample until” some convergence or termination criterion is met.One might ask if there is not some intermediate scheme, some way to pick samplepoints “at random,” yet spread out in some self-avoiding way, avoiding the chanceclustering that occurs with uniformly random points.A similar question arises for tasks other than Monte Carlo integration. We mightwant to search an n-dimensional space for a point where some (locally computable)condition holds. Of course, for the task to be computationally meaningful, therehad better be continuity, so that the desired condition will hold in some finite ndimensional neighborhood. We may not know a priori how large that neighborhoodis, however. We want to “sample until” the desired point is found, moving smoothlyto finer scales with increasing samples.

Is there any way to do this that is betterthan uncorrelated, random samples?The answer to the above question is “yes.” Sequences of n-tuples that filln-space more uniformly than uncorrelated random points are called quasi-randomsequences. That term is somewhat of a misnomer, since there is nothing “random”about quasi-random sequences: They are cleverly crafted to be, in fact, sub-random.The sample points in a quasi-random sequence are, in a precise sense, “maximallyavoiding” of each other.A conceptually simple example is Halton’s sequence [1]. In one dimension, thejth number Hj in the sequence is obtained by the following steps: (i) Write j as anumber in base b, where b is some prime.

(For example j = 17 in base b = 3 is122.) (ii) Reverse the digits and put a radix point (i.e., a decimal point base b) inSample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)Copyright (C) 1988-1992 by Cambridge University Press.Programs Copyright (C) 1988-1992 by Numerical Recipes Software.Permission is granted for internet users to make one paper copy for their own personal use.

Further reproduction, or any copying of machinereadable files (including this one) to any servercomputer, is strictly prohibited. To order Numerical Recipes books,diskettes, or CDROMsvisit website http://www.nr.com or call 1-800-872-7423 (North America only),or send email to trade@cup.cam.ac.uk (outside North America).7.7 Quasi- (that is, Sub-) Random Sequences.

Характеристики

Тип файла
PDF-файл
Размер
159,8 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее