Thermodynamics, Heat Transfer, And Fluid Flow. V.2. Heat Transfer (776131), страница 2
Текст из файла (страница 2)
. . . . . . . . . 27Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29HEAT EXCHANGERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 30Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Parallel and Counter-Flow Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Non-Regenerative Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .Regenerative Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cooling Towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Log Mean Temperature Difference Application to Heat Exchangers . . . . . . . . .Overall Heat Transfer Coefficient . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3031343435363739BOILING HEAT TRANSFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 40Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Nucleate Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Bulk Boiling . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Film Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Departure from Nucleate Boiling and Critical Heat Flux . . . . . .
. . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404041414243HEAT GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Heat Generation . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Flux Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Thermal Limits . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Average Linear Power Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Maximum Local Linear Power Density . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . .Temperature Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Volumetric Thermal Source Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fuel Changes During Reactor Operation . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .444647474848505051DECAY HEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Reactor Decay Heat Production . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Calculation of Decay heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Decay Heat Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Decay Heat Removal . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .HT-02Page ii5253555657Rev. 0Heat TransferLIST OF FIGURESLIST OF FIGURESFigure 1Conduction Through a Slab . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 7Figure 2Equivalent Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 3Cross-sectional Surface Area of a Cylindrical Pipe . . . . . . . . . . . . . . . . 11Figure 4Composite Cylindrical Layers . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 15Figure 5Pipe Insulation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 6Overall Heat Transfer Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 7Combined Heat Transfer . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 8Typical Tube and Shell Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 9Fluid Flow Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 10Heat Exchanger Temperature Profiles . .
. . . . . . . . . . . . . . . . . . . . . . . . 33Figure 11Non-Regenerative Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 12Regenerative Heat Exchanger . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 35Figure 13Boiling Heat Transfer Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Figure 14Axial Flux Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Figure 15Radial Flux Profile . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Figure 16Axial Temperature Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Figure 17Radial Temperature Profile Across a Fuel Rod andCoolant Channel . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Rev. 0Page iiiHT-02LIST OF TABLESHeat TransferLIST OF TABLESNONEHT-02Page ivRev. 0Heat TransferREFERENCESREFERENCESVanWylen, G. J. and Sonntag, R. E., Fundamentals of Classical ThermodynamicsSI Version, 2nd Edition, John Wiley and Sons, New York, ISBN 0-471-04188-2.Kreith, Frank, Principles of Heat Transfer, 3rd Edition, Intext Press, Inc., NewYork, ISBN 0-7002-2422-X.Holman, J. P., Thermodynamics, McGraw-Hill, New York.Streeter, Victor, L., Fluid Mechanics, 5th Edition, McGraw-Hill, New York, ISBN07-062191-9.Rynolds, W. C.
and Perkins, H. C., Engineering Thermodynamics, 2nd Edition,McGraw-Hill, New York, ISBN 0-07-052046-1.Meriam, J. L., Engineering Mechanics Statics and Dynamics, John Wiley andSons, New York, ISBN 0-471-01979-8.Schneider, P. J. Conduction Heat Transfer, Addison-Wesley Pub. Co., California.Holman, J. P., Heat Transfer, 3rd Edition, McGraw-Hill, New York.Knudsen, J.
G. and Katz, D. L., Fluid Dynamics and Heat Transfer, McGraw-Hill,New York.Kays, W. and London, A. L., Compact Heat Exchangers, 2nd Edition, McGrawHill, New York.Weibelt, J. A., Engineering Radiation Heat Transfer, Holt, Rinehart and WinstonPublish., New York.Sparrow, E. M. and Cess, R. E., Radiation Heat Transfer, Brooks/Cole Publish.Co., Belmont, California.Hamilton, D. C. and Morgan, N. R., Radiant-Interchange Configuration Factors,Tech.
Note 2836, National Advisory Committee for Aeronautics.McDonald, A. T. and Fox, R. W., Introduction to Fluid mechanics, 2nd Edition,John Wiley and Sons, New York, ISBN 0-471-01909-7.Rev. 0Page vHT-02REFERENCESHeat TransferREFERENCES (Cont.)Zucrow, M. J. and Hoffman, J. D., Gas Dynamics Vol.b1, John Wiley and Sons,New York, ISBN 0-471-98440-X.Crane Company, Flow of Fluids Through Valves, Fittings, and Pipe, Crane Co.Technical Paper No. 410, Chicago, Illinois, 1957.Esposito, Anthony, Fluid Power with Applications, Prentice-Hall, Inc., NewJersey, ISBN 0-13-322701-4.Beckwith, T. G. and Buck, N. L., Mechanical Measurements, Addison-WesleyPublish Co., California.Wallis, Graham, One-Dimensional Two-Phase Flow, McGraw-Hill, New York,1969.Kays, W.
and Crawford, M. E., Convective Heat and Mass Transfer, McGrawHill, New York, ISBN 0-07-03345-9.Collier, J. G., Convective Boiling and Condensation, McGraw-Hill, New York,ISBN 07-084402-X.Academic Program for Nuclear Power Plant Personnel, Volumes III and IV,Columbia, MD: General Physics Corporation, Library of Congress Card #A326517, 1982.Faires, Virgel Moring and Simmang, Clifford Max, Thermodynamics, MacMillanPublishing Co. Inc., New York.HT-02Page viRev. 0Heat TransferOBJECTIVESTERMINAL OBJECTIVE1.0Given the operating conditions of a thermodynamic system and the necessaryformulas, EVALUATE the heat transfer processes which are occurring.ENABLING OBJECTIVES1.1DESCRIBE the difference between heat and temperature.1.2DESCRIBE the difference between heat and work.1.3DESCRIBE the Second Law of Thermodynamics and how it relates to heat transfer.1.4DESCRIBE the three modes of heat transfer.1.5DEFINE the following terms as they relate to heat transfer:a.Heat fluxb.Thermal conductivityc.Log mean temperature differenced.Convective heat transfer coefficiente.Overall heat transfer coefficientf.Bulk temperature1.6Given Fourier’s Law of Conduction, CALCULATE the conduction heat flux in arectangular coordinate system.1.7Given the formula and the necessary values, CALCULATE the equivalent thermalresistance.1.8Given Fourier’s Law of Conduction, CALCULATE the conduction heat flux in acylindrical coordinate system.1.9Given the formula for heat transfer and the operating conditions of the system,CALCULATE the rate of heat transfer by convection.1.10DESCRIBE how the following terms relate to radiant heat transfer:a.Black body radiationb.Emissivityc.Radiation configuration factorRev.
0Page viiHT-02OBJECTIVESHeat TransferENABLING OBJECTIVES (Cont.)1.11DESCRIBE the difference in the temperature profiles for counter-flow and parallel flowheat exchangers.1.12DESCRIBE the differences between regenerative and non-regenerative heat exchangers.1.13Given the temperature changes across a heat exchanger, CALCULATE the log meantemperature difference for the heat exchanger.1.14Given the formulas for calculating the conduction and convection heat transfercoefficients, CALCULATE the overall heat transfer coefficient of a system.1.15DESCRIBE the process that occurs in the following regions of the boiling heat transfercurve:a.Nucleate boilingb.Partial film boilingc.Film boilingd.Departure from nucleate boiling (DNB)e.Critical heat fluxHT-02Page viiiRev. 0Heat TransferOBJECTIVESTERMINAL OBJECTIVE2.0Given the operating conditions of a typical nuclear reactor, DESCRIBE the heat transferprocesses which are occurring.ENABLING OBJECTIVES2.1DESCRIBE the power generation process in a nuclear reactor core and the factors thataffect the power generation.2.2DESCRIBE the relationship between temperature, flow, and power during operation ofa nuclear reactor.2.3DEFINE the following terms:a.Nuclear enthalpy rise hot channel factorb.Average linear power densityc.Nuclear heat flux hot channel factord.Heat generation rate of a coree.Volumetric thermal source strength2.4CALCULATE the average linear power density for an average reactor core fuel rod.2.5DESCRIBE a typical reactor core axial and radial flux profile.2.6DESCRIBE a typical reactor core fuel rod axial and radial temperature profile.2.7DEFINE the term decay heat.2.8Given the operating conditions of a reactor core and the necessary formulas,CALCULATE the core decay heat generation.2.9DESCRIBE two categories of methods for removing decay heat from a reactor core.Rev.