John H. Lienhard IV, John H. Lienhard V. A Heat Transfer Textbook (776116), страница 75
Текст из файла (страница 75)
C, 95:477–482, 1973.[9.20] J. H. Lienhard and V. K. Dhir. Hydrodynamic prediction of peakpool-boiling heat fluxes from finite bodies. J. Heat Transfer, Trans.ASME, Ser. C, 95:152–158, 1973.References[9.21] S. S. Kutateladze. On the transition to film boiling under naturalconvection. Kotloturbostroenie, (3):10, 1948.[9.22] K. H. Sun and J. H.
Lienhard. The peak pool boiling heat flux onhorizontal cylinders. Int. J. Heat Mass Transfer, 13:1425–1439,1970.[9.23] J. S. Ded and J. H. Lienhard. The peak pool boiling heat flux froma sphere. AIChE J., 18(2):337–342, 1972.[9.24] A. L. Bromley. Heat transfer in stable film boiling. Chem. Eng.Progr., 46:221–227, 1950.[9.25] P. Sadasivan and J. H. Lienhard. Sensible heat correction in laminarfilm boiling and condensation. J. Heat Transfer, Trans. ASME, 109:545–547, 1987.[9.26] V.
K. Dhir and J. H. Lienhard. Laminar film condensation on planeand axi-symmetric bodies in non-uniform gravity. J. Heat Transfer,Trans. ASME, Ser. C, 93(1):97–100, 1971.[9.27] P. Pitschmann and U. Grigull. Filmverdampfung an waagerechtenzylindern. Wärme- und Stoffübertragung, 3:75–84, 1970.[9.28] J. E. Leonard, K. H. Sun, and G. E. Dix. Low flow film boiling heattransfer on vertical surfaces: Part II: Empirical formulations andapplication to BWR-LOCA analysis. In Proc.
ASME-AIChE Natl. HeatTransfer Conf. St. Louis, August 1976.[9.29] J. W. Westwater and B. P. Breen. Effect of diameter of horizontaltubes on film boiling heat transfer. Chem. Eng. Progr., 58:67–72,1962.[9.30] P. J. Berenson. Transition boiling heat transfer from a horizontalsurface. M.I.T. Heat Transfer Lab. Tech. Rep. 17, 1960.[9.31] J. H. Lienhard and P. T. Y. Wong. The dominant unstable wavelength and minimum heat flux during film boiling on a horizontalcylinder. J.
Heat Transfer, Trans. ASME, Ser. C, 86:220–226, 1964.[9.32] L. C. Witte and J. H. Lienhard. On the existence of two transitionboiling curves. Int. J. Heat Mass Transfer, 25:771–779, 1982.[9.33] J. H. Lienhard and L. C. Witte. An historical review of the hydrodynamic theory of boiling. Revs. in Chem. Engr., 3(3):187–280, 1985.519520Chapter 9: Heat transfer in boiling and other phase-change configurations[9.34] J. R. Ramilison and J. H. Lienhard. Transition boiling heat transferand the film transition region.
J. Heat Transfer, 109, 1987.[9.35] J. M. Ramilison, P. Sadasivan, and J. H. Lienhard. Surface factorsinfluencing burnout on flat heaters. J. Heat Transfer, 114(1):287–290, 1992.[9.36] A. E. Bergles and W. M. Rohsenow. The determination of forcedconvection surface-boiling heat transfer. J. Heat Transfer, Trans.ASME, Series C, 86(3):365–372, 1964.[9.37] E. J. Davis and G. H.
Anderson. The incipience of nucleate boilingin forced convection flow. AIChE J., 12:774–780, 1966.[9.38] K. Kheyrandish and J. H. Lienhard. Mechanisms of burnout in saturated and subcooled flow boiling over a horizontal cylinder. InProc. ASME–AIChE Nat. Heat Transfer Conf. Denver, Aug. 4–7 1985.[9.39] A. Sharan and J. H. Lienhard. On predicting burnout in the jet-diskconfiguration. J. Heat Transfer, 107:398–401, 1985.[9.40] A. L. Bromley, N. R.
LeRoy, and J. A. Robbers. Heat transfer inforced convection film boiling. Ind. Eng. Chem., 45(12):2639–2646,1953.[9.41] L. C. Witte. Film boiling from a sphere. Ind. Eng. Chem. Fundamentals, 7(3):517–518, 1968.[9.42] L. C. Witte. External flow film boiling. In S. G. Kandlikar, M. Shoji,and V. K. Dhir, editors, Handbook of Phase Change: Boilingand Condensation, chapter 13, pages 311–330. Taylor & Francis,Philadelphia, 1999.[9.43] J. G. Collier and J. R. Thome. Convective Boiling and Condensation.Oxford University Press, Oxford, 3rd edition, 1994.[9.44] J. C. Chen. A correlation for boiling heat transfer to saturatedfluids in convective flow. ASME Prepr. 63-HT-34, 5th ASME-AIChEHeat Transfer Conf.
Boston, August 1963.[9.45] S. G. Kandlikar. A general correlation for saturated two-phase flowboiling heat transfer inside horizontal and vertical tubes. J. HeatTransfer, 112(1):219–228, 1990.References[9.46] D. Steiner and J. Taborek. Flow boiling heat transfer in verticaltubes correlated by an asymptotic model. Heat Transfer Engr., 13(2):43–69, 1992.[9.47] S. G. Kandlikar and H. Nariai.
Flow boiling in circular tubes. In S. G.Kandlikar, M. Shoji, and V. K. Dhir, editors, Handbook of PhaseChange: Boiling and Condensation, chapter 15, pages 367–402.Taylor & Francis, Philadelphia, 1999.[9.48] V. E. Schrock and L. M. Grossman. Forced convection boiling intubes.
Nucl. Sci. Engr., 12:474–481, 1962.[9.49] M. M. Shah. Chart correlation for saturated boiling heat transfer:equations and further study. ASHRAE Trans., 88:182–196, 1982.[9.50] A. E. Gungor and R. S. H. Winterton. Simplified general correlationfor flow boiling heat transfer inside horizontal and vertical tubes.Chem. Engr. Res. Des., 65:148–156, 1987.[9.51] S. G. Kandlikar, S. T. Tian, J. Yu, and S. Koyama. Further assessmentof pool and flow boiling heat transfer with binary mixtures. InG. P.
Celata, P. Di Marco, and R. K. Shah, editors, Two-Phase FlowModeling and Experimentation. Edizioni ETS, Pisa, 1999.[9.52] Y. Taitel and A. E. Dukler. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flows. AIChEJ., 22(1):47–55, 1976.[9.53] A. E. Dukler and Y. Taitel. Flow pattern transitions in gas–liquidsystems measurement and modelling. In J. M. Delhaye, N.
Zuber,and G. F. Hewitt, editors, Advances in Multi-Phase Flow, volume II.Hemisphere/McGraw-Hill, New York, 1985.[9.54] G. F. Hewitt. Burnout. In G. Hetsroni, editor, Handbook of Multiphase Systems, chapter 6, pages 66–141. McGraw-Hill, New York,1982.[9.55] Y. Katto. A generalized correlation of critical heat flux forthe forced convection boiling in vertical uniformly heated roundtubes. Int. J. Heat Mass Transfer, 21:1527–1542, 1978.[9.56] Y.
Katto and H. Ohne. An improved version of the generalizedcorrelation of critical heat flux for convective boiling in uniformly521522Chapter 9: Heat transfer in boiling and other phase-change configurationsheated vertical tubes. Int. J. Heat. Mass Transfer, 27(9):1641–1648,1984.[9.57] P. B. Whalley. Boiling, Condensation, and Gas-Liquid Flow.
OxfordUniversity Press, Oxford, 1987.[9.58] B. Chexal, J. Horowitz, G. McCarthy, M. Merilo, J.-P. Sursock, J. Harrison, C. Peterson, J. Shatford, D. Hughes, M. Ghiaasiaan, V.K. Dhir,W. Kastner, and W. Köhler. Two-phase pressure drop technologyfor design and analysis. Tech. Rept. 113189, Electric Power Research Institute, Palo Alto, CA, August 1999.[9.59] I. G. Shekriladze and V.
I. Gomelauri. Theoretical study of laminarfilm condensation of flowing vapour. Int. J. Heat. Mass Transfer,9:581–591, 1966.[9.60] P. J. Marto. Condensation. In W. M. Rohsenow, J. P. Hartnett, andY. I. Cho, editors, Handbook of Heat Transfer, chapter 14. McGrawHill, New York, 3rd edition, 1998.[9.61] J. Rose, Y. Utaka, and I. Tanasawa. Dropwise condensation. In S. G.Kandlikar, M. Shoji, and V. K. Dhir, editors, Handbook of PhaseChange: Boiling and Condensation, chapter 20.
Taylor & Francis,Philadelphia, 1999.[9.62] D. W. Woodruff and J. W. Westwater. Steam condensation on electroplated gold: effect of plating thickness. Int. J. Heat. Mass Transfer, 22:629–632, 1979.[9.63] P. D. Dunn and D. A. Reay. Heat Pipes. Pergamon Press Ltd., Oxford,UK, 4th edition, 1994.Part IVThermal Radiation Heat Transfer52310. Radiative heat transferThe sun that shines from Heaven shines but warm,And, lo, I lie between that sun and thee:The heat I have from thence doth little harm,Thine eye darts forth the fire that burneth me:And were I not immortal, life were doneBetween this heavenly and earthly sun.Venus and Adonis, Wm.
Shakespeare, 159310.1The problem of radiative exchangeChapter 1 described the elementary mechanisms of heat radiation. Before we proceed, you should reflect upon what you remember about thefollowing key ideas from Chapter 1:••••••••Electromagnetic wave spectrumHeat radiation & infrared radiationBlack bodyAbsorptance, αReflectance, ρTransmittance, τα+ρ+τ =1e(T ) and eλ (T ) for black bodies•••••••The Stefan-Boltzmann lawWien’s law & Planck’s lawRadiant heat exchangeConfiguration factor, F1–2Emittance, εTransfer factor, F1–2Radiation shieldingThe additional concept of a radiation heat transfer coefficient was developed in Section 2.3.
We presume that all these concepts are understood.The heat exchange problemFigure 10.1 shows two arbitrary surfaces radiating energy to one another.The net heat exchange, Qnet , from the hotter surface (1) to the cooler525526Radiative heat transfer§10.1Figure 10.1 Thermal radiation between two arbitrary surfaces.surface (2) depends on the following influences:• T1 and T2 .• The areas of (1) and (2), A1 and A2 .• The shape, orientation, and spacing of (1) and (2).• The radiative properties of the surfaces.• Additional surfaces in the environment, whose radiation may bereflected by one surface to the other.• The medium between (1) and (2) if it absorbs, emits, or “reflects”radiation.