Главная » Просмотр файлов » Методические указания к лабораторной работе №4

Методические указания к лабораторной работе №4 (774832)

Файл №774832 Методические указания к лабораторной работе №4 (Методические указания к лабораторной работе №4)Методические указания к лабораторной работе №4 (774832)2017-06-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лабораторная работа №4. Моделирование и исследование сети Хэмминга.

Цель работы – изучение алгоритмов обучения и функционирования сети Хэмминга и моделирование нейронной сети для решения задачи распознавания образов.

Общие сведения

Среди различных конфигураций искусственных нейронных сетей (НС) встречаются такие, при классификации которых по принципу обучения, строго говоря, не подходят ни обучение с учителем, ни обучение без учителя. В таких сетях весовые коэффициенты синапсов рассчитываются только однажды перед началом функционирования сети на основе информации об обрабатываемых данных, и все обучение сети сводится именно к этому расчету. С одной стороны, предъявление априорной информации можно расценивать, как помощь учителя, но с другой – сеть фактически просто запоминает образцы до того, как на ее вход поступают реальные данные, и не может изменять свое поведение, поэтому говорить о звене обратной связи с "миром" (учителем) не приходится. Из сетей с подобной логикой работы наиболее известна сеть Хэмминга.

Сеть Хэмминга – классификатор минимальной ошибки для двоичных векторов, при этом ошибка определяется с использованием расстояния Хэмминга. Классификация производится следующим образом: входной вектор относится к классу, для которого расстояние от эталонного вектора минимальное.

Расстояние Хэмминга определяется числом битов во входном векторе, не совпадающих с соответствующими битами в эталонном векторе.

Если сравнивать сеть Хэмминга с сетью Хопфилда с точки зрения производительности и емкости, то сеть Хэмминга оптимально классифицирует двоичные вектора, когда ошибки в битах независимы или случайные. Что касается их емкости, то сеть Хопфилда с N входами имеет N*(N-1) связей и ограниченную емкость, зависящую от N : Cнор = 0,15*N. Ёмкость сети Хэмминга не зависит от числа компонент входного вектора, но зависит от числа элементов М в слое категорий. При этом количество связей сети Хэмминга определяется как: Снам = М*(М+N).

Рис.1. Архитектура сети Хэмминга.

Сеть Хэмминга содержит три слоя: входной слой с N ПЭ, слой категорий с М ПЭ (на рис.1 изображен в виде слоев 1 и 2) и выходной слой.

Каждый ПЭ в слое категорий соответствует различным классификационным категориям, представленным эталонными векторами, которые кодируются в весовых коэффициентах связей от входного слоя. Эти коэффициенты устанавливаются в фазе обучения. Пусть для определения категорий используется M эталонных векторов:

xj = (xj1, xj2,…,xjn), j= 1,…,M (1)

Предполагается, что компоненты xi из xj принимают значения –1 или 1. Тогда фаза обучения заключается в установке весовых коэффициентов:

Wji = Xji / 2 I=1,…,N; j = 1,…,M (2)

Wj0 = N/2 j= 1,…,M,

где Wji –это весовые коэффициенты соединений ПЭi во входном слое с ПЭj в слое категорий, и Wj0 – это весовой коэффициент связи между ПЭ смещения с ПЭj в слое категорий.

При функционировании входной вектор обрабатывается обычным образом, образуя следующий входной сигнал для ПЭj в слое категорий:

Ij = SUM (Wji*Xi), j = 1,…,M (3)

0 I N,

где х=(х1,х2,...,хn) – входной вектор, который подобно эталонному вектору имеет компоненты, которые принимают значения -1 или 1.

Из (1), (2), (3):

Ij = 0.5 * (SUM(Xji*Xi)+N), j=1,…,M (4)

Так как xji и xi принимают только значения –1.0 или 1.0 уравнение (4) можно переписать в виде:

Ij= 0.5 *(Nja-Njd+N), j=1,…,M (5)

Где NJa – это число битов, в которых xj и x согласуются , и NJd –число битов, в которых xj и x не согласуются.

Но N =NJa + NJd, j =1, … ,M поэтому (5) можно записать в следующем виде

Ij = 0,5(NJa – (N – NJa) + N) = NJa , j=1,…,M (6)

= N- NJd, j=1,…,M (7)

Выражения (6) и (7) показывают, что между входным слоем и слоем категорий вычисляется N минус расстояние Хэмминга, или что то же самое, число битов, в которых входной вектор совпадает с исходным.

В качестве активационной функции в слое категорий используется активационная функция персептрона Тр:

Тp(I) = I, если I>0 (8)

= 0, если I<=0

ПЭ с максимальным начальным состоянием будет единственным, чей исходный вектор имеет наименьшее расстояние Хэмминга для входного вектора. Слой категорий -- соревновательный слой, в котором выигрывает элемент с максимальной активацией. Это может быть реализовано итеративным путем через латеральные связи в слое категорий. Каждый узел j соединен с каждым из остальных узлов k в слое через соединение с фиксированным значением коэффициента l kj , где

l kj = 1, k=j (9)

= - ε , k/=j, 0 < ε ≤ 1/M

В конце функционирования только одна из категорий будет активна, то есть будет иметь ненулевой выход. Для описания соревнования через латеральные связи примем, что Yj(t), представляет выход j-го ПЭ в слое категорий на t-ой итерации соревнования. Как обсуждалось выше, слой категорий инициализируется следующим образом:

Yj(0) = Tp(Ij) (10)

После инициализации слоя входной сигнал удаляется и, итерационный процесс в слое категорий продолжается до стабилизации. На t-ой итерации выход j-го ПЭ:

Yj(t) = Tp(Yj(t-1) – ε * SUM Yk(t-1)) (11)

k/=j

Эта формула демонстрирует стремление к состоянию, когда только один ПЭ в слое активен: этот ПЭ единственный, имеющий максимальное начальное состояние. Слой категорий соответственно связан с выходным слоем через соединения с фиксированными весовыми коэффициентами, равными 1.

Выходной слой использует в качестве активационной функции ступенчатую функцию, и поэтому ПЭ в выходном слое имеют значения только 0 или 1; при сходимости соревнования в выходном слое активным становится только один победитель.

Пример

1. Постановка задачи моделирования и составление входного файла.

Создать нейронную сеть для распознавания графических изображений, с применением модели сети Хэмминга.

В качестве изображений возьмем следующие символы:

A, B, C, D, E, F, G, H, I, J, +, -, !, ?

Изображения схематично представлены в виде матриц 6х7 точек ниже в таблицах.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.1 «A »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.2 «B »

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.3 «C »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.4 «D »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.5 «E »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.6 «F »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.7 «G »

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Табл.8 «H »

1

1

1

1

1

1

1

1

1

1

1

Табл.9 «I »

1

1

1

1

1

1

1

1

1

1

1

Табл.10 «J »

1

1

1

1

1

1

1

1

1

Табл.11 «+ »

1

1

1

1

1

Табл.12 «- »

1

1

1

1

1

1

Табл.13 «! »

1

1

1

1

1

1

1

1

1

1

Табл.14 «? »

Характеристики

Тип файла
Документ
Размер
485,5 Kb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее