Metodichka (769477), страница 6

Файл №769477 Metodichka (КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ НАНОСТРУКТУР) 6 страницаMetodichka (769477) страница 62019-10-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Проиллюстрировать следующие факты:431) в случае достаточно тонкого потенциального барьера для частиц с энергией, меньшей его высоты, существует конечная вероятность прохождения электрона из области 1 в область 3;2) при прохождении электрона над потенциальным барьером существует конечная вероятность того, что электрон отразится отслоя 2;3) существуют избранные значения энергии электрона, при которых амплитуда волновой функции в области барьера будетбольше, чем в других областях.Примечание: пример программы для среды MathCAD приведен в Приложении 5.2.4.2.

Метод матриц переноса и его применение длямоделирования движения электрона в сложномпотенциальном рельефеКак можно заметить из уже рассмотренных примеров, при решениизадач о движении электронов в слоисто-неоднородных средах решенияуравнения Шредингера записываются отдельно в каждой из областей, гдепотенциал U  z  постоянен, в виде суперпозиции падающей и отраженнойволн де Бройля, а для нахождения амплитуд этих волн используются граничные условия на интерфейсах между слоями. Такой подход позволяетлегко формализовать расчет амплитуд волн де Бройля и коэффициентовотражения и прохождения в многослойных средах с использованием метода матриц переноса.Рассмотрим структуру, состоящую из N слоёв, заключенных междуполубесконечными областями, причем в каждом слое и в крайних областях потенциал U  z  постоянен (рис.

2.12):44Компьютерное моделирование микро и наноструктурU 0 , если z  z0 ,U  z   U i , если zi 1  z  zi , i  1,..., N ,U , если z  z , N 1N(2.49)где z k – координата границы между k-ой и (k+1)-ой областями, k  0,..., N .Рис. 2.12. Энергетическая диаграмма многослойной гетероструктуры.Как и прежде, будем считать, что источник электронов находится вобласти 0 и бесконечно удален от слоистой структуры. Электрон движетсяот источника в положительном направлении оси Oz, обладая энергией E.Решение уравнения Шредингера (2.1) для i-ой области ( i  0,..., N  1)записывается в виде: i ( z, E )  Ai e j  i z  Bi e  j  i z ,(2.50)где Ai и Bi – амплитуды падающей и отраженной волн де Бройля в i-ойобласти соответственно,  i E  2mi ( E  U i ), mi – эффективная масса в i2ой области. Граничные условия (2.2) принимают вид:45 k  z k    k  1  z k  ,1  k 1 1  kzzk .k m zmz kk 1(2.51)Подставляя общее решение (2.17) в граничные условия (2.18), получим систему линейных алгебраических уравнений относительно коэффициентов Ai , Bi : Ak e j  k zk  Bk e  j  k z k  Ak 1 e j  k 1 zk  Bk 1 e  j  k 1 zk , k j  k zk k  j  k zk k 1 j  k 1 z k k 1  j  k 1 z k (2.52)jAejBejAejBe,kk 1k 1 kmmkmk 1mk 1kкоторая путем алгебраических преобразований может быть приведена квиду:k1 Ak 1  Ak  1 2   k 1B  A  1 1   kk k 12   k 1mk 1   j  k 1   k z k mk 1   j  k 1   k z k1ee Bk  1  k,mk 2   k 1 mk (2.53)mk 1  j  k 1   k z k mk 1  j   k 1   k z k1ee Bk  1  k,mk 2   k 1 mk или в матричной форме: Ak 1 A   Tk , k 1   k  , Bk 1  Bk (2.54)где Tk ,k 1 – матрица передачи волны де Бройля из области k в область k+1:Tk ,k 11 mk 1   j  k 1   k z k 1  ke 2   k 1 mk  mk 1  j  k 1   k zk1 1  ke2mk1k mk 1   j  k 1   k zk11  ke2   k 1 mk  mk 1  j  k 1   k z k11  ke2   k 1 mk  .

(2.55)Из рекуррентного соотношения (2.19), с учетом того, что по условию задачи в области N  1 нет встречной электронной волны (т.е.B N 1  0 ), можно записать следующую систему из двух уравнений для амплитуд волн де Бройля в полубесконечных областях до и после структуры:46Компьютерное моделирование микро и наноструктур AN 1 A   T   0  ,0 B0 (2.56)гдеTT   00 T100T01    Tk , k 1T11  k  N(2.57)– матрица передачи волны де Бройля через всю слоистую структуру. Следует отметить, что матрица T полностью определяется параметрами материалов структуры и прилегающих областей.Коэффициенты отражения и прохождения электронной волны черезструктуру могут быть выражены через элементы матрицы передачи изсистемы уравнений (2.20):RB0A02222T 10 ,T11(2.58)2 N 1 m0 T11T00  T01T10m0 AN 1.D  N 1 0 m N 1 A0 2 0 m N 1T11(2.59)Таким образом, c использованием матричного метода могут бытьрассчитаны коэффициенты отражения и прохождения электронных волнчерез слоистую структуру при задании параметров всех входящих в неёслоёв, а также амплитуды волн де Бройля в каждой точке структуры, отнесенные к амплитуде падающей на структуру электронной волны.Пример реализации матричного метода в пакете MathCAD и егоприменения для решения задачи о движении электрона через потенциальный барьер приведен в Приложении 6.

Применение матричного методадля моделирования движения электрона через многослойные структуры сосложным потенциальным рельефом обсуждается в следующих разделах.47Задания для компьютерного моделирования.1. РассмотретьдвухслойнуюгетероструктуруAl0.15Ga0.85As —Al0.3Ga0.7As, заключенную между полубесконечными областямиGaAs и построить её потенциальный профиль для электронов.2. Построить зависимости коэффициентов отражения и прохожденияот энергии электрона в диапазоне от 0 до 2 эВ.3. Построить огибающие волновых функций в гетероструктуре дляразличных значений энергии электрона, в том числе, для энергий,соответствующих минимумам и максимумам коэффициента прохождения, и схематически наложить эти графики на потенциальныйпрофиль структуры.Примечание: при расчете использовать метод матриц переноса.2.4.3. Моделирование движения электрона черездвухбарьерную квантоворазмерную структуру (ДБКС)Мы уже рассмотрели задачи, касающиеся поведения частиц в системах с изолированными квантовыми ямами и потенциальными барьерами.Как уже отмечалось, современные технологии выращивания эпитаксиальных структур позволяют формировать многослойные системы со сложнымпотенциальным рельефом, в том числе систем со связанными квантовымиямами.

Последние интересны тем, что в них возможно формирование заданного энергетического спектра и скоростей рассеяния электронов нетолько путем задания формы потенциальной ямы, но и путем изменениясвязи между соседними квантовыми ямами. Кроме того, в ряде случаев коэффициент прохождения через многобарьерные структуры оказываетсябольше коэффициентов прохождения через каждый барьер в отдельности.Данный эффект возникает вследствие интерференции волн де Бройля и48Компьютерное моделирование микро и наноструктурносит название резонансного туннелирования через многобарьернуюструктуру.Рассмотрим прохождение частицы через систему из двух потенциальных барьеров, разделенных квантовой ямой, заключенную между двумя полубесконечными областями (рис.

2.13). Как и прежде, будем считать,что источник электронов находится в области 0 и бесконечно удален отструктуры. Электрон движется от источника в положительном направлении оси Oz, обладая энергией E. Для расчета коэффициента прохожденияэлектрона и амплитуд волн де Бройля воспользуемся матричным методом: число слоёв в структуре N  3 ; число границ в рассматриваемой системе N  1  4 ; число областей, в которых потенциал U  z  постоянен N  2  5 .Рис. 2.13. Энергетическая диаграмма двухбарьерной квантоворазмерной гетероструктуры.Таким образом, для описания системы необходимо задать парамет-49ры материала в 5-ти областях, а также координаты границ между областями.

Эти исходные данные позволяют рассчитать 4 матрицы передачи волны де Бройля для каждой из границ с использованием выражения (2.0.) иобщую матрицу передачи структуры (2.21), из которой вычисляется коэффициент прохождения (2.22). А с использованием выражений (2.19) и(2.20) рассчитываются амплитуды волн де Бройля в каждой из областей.Результаты расчета зависимости коэффициента прохождения отэнергии электронов представлены на рис. 2.14. Как следует из результатоврасчетов, для существует некоторое значение энергии электрона, меньшеевысоты потенциальных барьеров, определяемое толщинами квантоворазмерных слоёв, при котором коэффициент прохождения равен единице.

Характеристики

Тип файла
PDF-файл
Размер
2,37 Mb
Тип материала
Высшее учебное заведение

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее