165726 (767798), страница 2
Текст из файла (страница 2)
Следует заметить, что в набухших образцах композита на высокотемпературной ветви главного релаксационного максимума был обнаружен более слабый пик механических потерь, который в образце, содержащем 8% влаги, был расположен при 393, а в образце, содержащем 20,6% воды, при 378 К. Так как главный релаксационный максимум в хорошо высушенном образце наблюдался при 337 К, имеются все основания полагать, что более высокотемпературный fi-пик обусловлен «размораживанием» сегментального движения в областях, состоящих из крупных фрагментов цепей эпоксидной смолы и связанных с ними водородными связями молекул воды, расположенных между соседними сегментами полимерных цепей. Естественно, что такая «связанная» вода будет выкипать и испаряться при более высокой температуре, чем вода, заключенная в большой объем. С ростом концентрации влаги в композите увеличивается число таких областей, а следовательно, возрастает высота пика потерь. В то же время положение пика смещается в сторону низких температур, так как при большом содержании влаги все большую роль будут играть более крупные кластеры воды, которые будут разрушаться, освобождая молекулы воды, при температурах, близких к температуре кипения воды, находящейся в свободном состоянии.
Так как в данной работе влага вводилась в полимерный композит, то нами были изучены динамические механические свойства армирующего высокомодульного наполнителя тем же методом. В чистом высокомодульном волокне, которое служило наполнителем, обнаружены пики механических потерь при 253 К (ему соответствует высокотемпературная ветвь fi-пика в композите), а также при 533 и 813 К (интенсивные пики). Последние два пика лежат вдали от интересовавшей нас области температур.
Нами были изучены вязкоупругие свойства эпоксидной смолы, которая выполняла функции связующего в исследованном композите. Оказалось, что основные эффекты, обнаруженные в композите, имеют место и в эпоксидном связующем, содержащем влагу.
ЛИТЕРАТУРА
-
Машинская Г. П. В кн.: Пластики конструкционного назначения. М.: Химия, 1974, с. 266.
-
Перепечко И. И. Акустические методы исследования полимеров. М.: Химия, 1973, с. 295.
-
Перепечко И. И., Трепелкова Л. И., Бодрова Л. А., Бунина Л, О. Высокомолек. соед. Б, 1968, т. 10, № 7, с. 507.
-
Bacaredda М., Butta Е., Frosini V., De Petris S. J. Polymer Sci. A-2, 1967, v. 5, № 6, p. 1296.
-
Роусон Т. Неорганические стеклообразующие системы / Под ред. Танаева И. В. М.: Мир, 1970, с. 312.
-
Trina Е., Apfel R. Е. J. Chem. Phys., 1980, v. 72, № 12, с. 6731.
-
Кикоин И. К. Таблицы физических величин. Справочник. М.: Атомиздат, 1976, с. 1008.
-
Judd N. С. W. Brit. Polymer J., 1977, v. 9, № 1, p. 36.
-
Попов К. П., Артамонова Р. В., Чуваев В. Ф., Королев А. Я. Коллоидн. ж., 1978, т. 40, Я» 6, с. 1199.