90459 (764172)

Файл №764172 90459 (Факторизация в численных методах интегрирования вырожденных эллиптических уравнений ионосферной плазмы)90459 (764172)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Факторизация в численных методах интегрирования вырожденных эллиптических уравнений ионосферной плазмы

Н.М. Кащенко

1. Численный метод интегрирования вырожденных эллиптических уравнений

В предположении обычных при моделировании ионосферы приближениях малости инерционных сил для заряженной составляющей плазмы и квазипотенциальности силовых линий магнитного поля Земли уравнения переноса заряженных частиц имеют вид [3]:

(1)

В этих уравнениях ni — концентрация частиц, qi — источники и потери, — матрица коэффициентов диффузии, имеющая только продольные компоненты,

— скорость переноса частиц. Аналогичный вид имеют уравнения теплопроводности.

Часто удобно решать уравнения таких моделей конечно-разностным методом на прямоугольных сетках в сферической системе координат. При этом возникает проблема решения вырожденных эллиптических уравнений со смешанными производными. Разностная аппроксимация таких уравнений приводит к разностным схемам, для которых не выполнено условие монотонности даже при аппроксимации в терминах потоков. Запись этих уравнений в дипольной системе координат после аппроксимации по переменной t приводит к уравнениям вида:

(Au Bu) Cu D, A 0, C 0, D 0. (2)

Здесь дифференцирование проводится по продольной координате, которую обозначим .

Для решения таких уравнений предлагается в (2) факторизовать дифференциальный оператор (дифференциальная прогонка), затем факторизованную запись преобразовать в сферическую систему координат и решать факторизованные уравнения в этой системе по схеме бегущего счета. После факторизации уравнения (2) получаем систему

(3)

Здесь e и z являются вспомогательными функциями. Первое и второе уравнения интегрируются в направлении возрастания , а третье интегрируется в направлении убывания . Систему (3) можно решать на прямоугольной сетке исходной системы координат, используя соответствующие разностные аппроксимации и схемы бегущего счета.

Пусть (x, y) — исходная система координат, а (, ) — новая система и пусть для формул перехода справедливо соотношение:

Тогда поэтому

и

аппроксимируются разностями назад при 0 и разностями вперед при 0, а

— разностями в обратном порядке. Аналогичные аппроксимации применяются и для производных по переменной y. Тогда суммарная погрешность аппроксимации имеет вид z (Au) ue eu, где z, u, e — погрешности аппроксимаций в уравнениях для z, u и e соответственно.

В зависимости от аппроксимации недифференциальных членов системы (3) получается семейство разностных схем с разными величинами суммарной погрешности аппроксимации. Параметры семейства следует подбирать для получения нужного свойства разностной схемы, например, для получения аппроксимации второго порядка. В ионосферных моделях для дополнительного уменьшения погрешностей аппроксимации область интегрирования делится пополам и применяется встречная дифференциальная прогонка с условиями гладкости решения на границе деления [3]. Описанная схема реализована на языке программирования Fortran в рамках численной модели ионосферы.

2. Некоторые варианты скалярной прогонки

Решение трехточечных разностных уравнений методом прогонки основано на неявной факторизации соответствующего разностного оператора. В [2] рассмотрены некоторые варианты решения трехточечных разностных уравнений, но, как указано в [1], анализ вычислительной устойчивости проведен не полностью. В работе [1] показано, что классическая запись прогонки даже при диагональном преобладании имеет погрешность порядка O(n3), и там же приведены примеры, показывающие, что при количестве узлов порядка 300 и использовании обычной точности могут получаться большие погрешности (десятки процентов и более). Там же указаны способы уменьшения этих погрешностей, в частности, с помощью преобразования прогонки к безразностному виду.

Рассмотрим некоторые варианты прогонок без разностей. В этом случае, как указано в [1], погрешности округлений накапливаются со скоростью не более чем O(n2), а при некоторых условиях на коэффициенты — O(n). Приведем несколько вариантов безразностных прогонок.

1. B 0. Этот случай рассмотрен в [1], а разностная схема для (2) имеет вид:

ai 0, bi 0, ci 0, di 0.

В этих уравнениях выполнено условие диагонального преобладания.

Прямой ход прогонки:

При этом 0 ei 1.

Обратный ход прогонки:

Здесь

Следовательно, формулы обратного хода можно записать в безразностном виде:

Кроме уменьшения порядка роста погрешностей этот вариант прогонки доказывает однозначную разрешимость соответствующих разностных уравнений.

2. B 0. В этом случае разностная схема имеет вид:

ai 0, bi 0, ci 0, di 0.

В этих уравнениях условие диагонального преобладания в общем случае не выполнено.

Прямой ход прогонки:

При этом 0 ei 1.

Обратный ход прогонки:

Здесь

Следовательно, формулы обратного хода можно записать в безразностном виде:

Как и в предыдущем случае, кроме уменьшения порядка роста погрешностей этот вариант прогонки доказывает однозначную разрешимость соответствующих разностных уравнений.

3. Циклический случай с B 0. Разностные уравнения имеют вид:

ai 0, bi 0, ci 0, di 0,

Прямой ход прогонки:

Вспомогательный ход прогонки:

Вычисление Yn:

В этих формулах величины ri, si, ui соответствуют уравнениям:

Обратный ход прогонки:

В этом варианте прогонки также отсутствуют разности, что, как и в предыдущих случаях, кроме уменьшения порядка роста погрешностей доказывает однозначную разрешимость соответствующих разностных уравнений.

Список литературы

1. Ильин В.П. Прямой анализ устойчивости метода прогонки // Актуальные проблемы вычислительной математики и математического программирования. Новосибирск: Наука, Сибирское отделение, 1985. С. 189—201

2. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978. 519 с.

3. Кащенко Н.М., Захаров В.Е. Численный метод интегрирования системы уравнений переноса ионосферной плазмы // Доклады международного математического семинара. Калининград: Издательство КГУ, 2002. С. 287—290

Для подготовки данной работы были использованы материалы с сайта http://old.albertina.ru/

Характеристики

Тип файла
Документ
Размер
210,26 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее