85477 (764047), страница 2
Текст из файла (страница 2)
Рис. 2а. Разность dN1(х) скоростей счета одиночного счетчика на высокой (Rс = 0.6 ГВ) и средней широте (Rс = 2.4 ГВ) в северном полушарии в зависимости от атмосферного давления х. Показаны утроенные стандартные ошибки экспериментальных точек 3σ.
Рис. 2б. То же, что на рис. 2а, для разности dN2(х) скоростей счета телескопа на широтах с Rс = 0.6 ГВ и Rс = 2.4 ГВ в северном полушарии.
В качестве примера на рис. 2а, б показаны высотные зависимости разности потоков частиц dN1m(x) и dN2m(x) в минимуме солнечной активности и указан интервал энергий первичных протонов, к которому эти разности относятся. Приведены также выражения для аппроксимации величин dN1m(x) и dN2m(x), рассчитанные по методу наименьших квадратов, и значения коэффициентов корреляции r между экспериментальными точками и аппроксимацией. Разности кривых поглощения в интервале энергий 0.1 ? E ? 1.5 ГэВ удается аппроксимировать экспоненциальным законом (сплошная линия).
Рис. 3а. Разность скоростей счета dN1(х) одиночного счетчика на высокой широте (Rс = 0.6 ГВ) и на низкой широте (Rс = 6.7 ГВ) в северном полушарии в зависимости от х. Показаны утроенные стандартные отклонения 3σ.
Рис. 3б. То же, что на рис. 3а, для разности dN2(х) скоростей счета телескопа на широтах с Rс = 0.6 ГВ и Rс = 6.7 ГВ в северном полушарии.
Аналогичные разности высотных кривых, полученных на широтах с Rс = 0.6 ГВ и Rс = 6.7 ГВ, приведены на рис 3а, б.
В этом случае интервал энергии первичных протонов составляет 0.1 < E < 5.8 ГэВ. Величины dN1m(x) и dN2m(x) можно аппроксимировать линейным законом.
Полученные экстраполяцией потоки заряженных частиц при х = 0 включают первичные космические лучи J0 и частицы альбедо JА. Вычитая из потоков заряженных частиц потоки частиц альбедо JА, можно получить потоки первичных космических лучей J0 на границе атмосферы. Величины потоков альбедных частиц JA представлены в [8, 9]. При вычислениях предполагалось, что первичные космические лучи распределены в верхней полусфере изотропно, а геометрические факторы одиночного счетчика и телескопа равны, соответственно, 16.4 см2 и 17.8 см2.ср. Среднемесячные значения потоков первичных частиц на границе атмосферы J0(Е > 0.1 ГэВ) и J0(0.1 < Е < 1.5 ГэВ) даны в таблицах 31–32.
б) связь между потоками частиц на границе атмосферы и потоками в максимуме кривой поглощения
Отметим тот факт, что коэффициент корреляции r между относящимися к минимуму солнечной активности величинами dN1(х), dN2(х) и их аппроксимацией близок к 1 (рис. 2а, б и 3а, б). Это свидетельствует о том, что такая аппроксимация данных оправдана. Однако высокие значения r получаются не для всех периодов наблюдений. В периоды, близкие к максимумам солнечной активности, широтный эффект в атмосфере существенно уменьшается, соответственно уменьшаются разности потоков частиц dN1(х) и dN2(х), и их ошибки становятся сравнимыми с ошибками наблюдений. Особенно это заметно на разностях, полученных по измерениям на высоких и средних широтах. В эти периоды метод экстраполяции становится неточным. Кроме того, потоки космических лучей N1(х), полученные на высоких широтах с помощью одиночного счетчика, могут содержать небольшой вклад от высыпающихся частиц солнечного или магнитосферного происхождения.
Поэтому для нахождения потоков первичных частиц J0(Е > 0.1 ГэВ) и J0(0.1 < Е Rc и R = Rc при Ra < Rc, mp – масса протона, xm – атмосферное давление в г.см–2 xm 0.8 [7].
Таблица 2. Значения хm и Еmin (для протонов, по данным одиночного счетчика) для пунктов наблюдений с геомагнитными порогами Rc, равными 0.6, 2.4 и 6.7 ГВ, в периоды минимума и максимума солнечной активности
Rc, ГВ (Ec, ГэВ) | 0.6 (0.18) | 2.4 (1.6) | 6.7 (5.8) | |
Минимум солнечной активности | хm, г.см–2 | 30 | 50 | 80 |
Еmin, ГэВ | 0.18 | 1.6* | 5.8* | |
Максимум солнечной активности | хm, гсм–2 | 60 | 60 | 85 |
Еmin, ГэВ | 0.5 | 1.6* | 5.8* |
* – значения Еmin определяются величиной порога геомагнитного обрезания Rc.
Из таблицы 2 видно, что для величин Nm значения Еmin определяются атмосферным обрезанием только в области полярных широт в максимуме солнечной активности. На средних и низких широтах минимальные значения энергий первичных частиц на границе атмосферы Еmin определяются величиной геомагнитного порога Rc.
Рис. 4а. Корреляционная связь между среднемесячными значениями первичных потоков космических лучей J0(0.1 > Е > 1.5 ГэВ), полученными методом экстраполяции за период 07.1957–06.2004, и разностями потоков частиц dN1m по данным одиночного счетчика в максимуме высотных кривых в атмосфере на широтах с Rс = 0.6 и 2.4 ГВ. Прямая линия проведена методом наименьших квадратов.
Рис. 4б. То же, что на рис. 4а, для разностей dN2m потоков космических лучей в максимумах высотных кривых в атмосфере, полученных с помощью телескопа, на широтах с Rс = 0.6 и 2.4 ГВ за период 01.1960–12.2004.
На рис. 4а, б показана зависимость между значениями первичных потоков космических лучей J0(0.1 > Е > 1.5 ГэВ), полученных методом экстраполяции, и разностями потоков частиц dN1m = N1m(0.6) – N1m(2.4) по данным одиночного счетчика и dN2m = N2m(0.6) – N2m(2.4) по данным телескопа в максимуме их высотных кривых. Соотношение между J0 и dN1m для одиночного счетчика имеет высокий коэффициент корреляции r = 0.95 и может быть представлено в виде:
J0(0.1 < E < 1.5 ГэВ) = (2773 ± 25)?dN1m + (154± 9), (1)
где [J0] = м–2.с–1.ср–1 и [dN1m] = см–2.с–1.
Для счетчикового телескопа (рис.4б) коэффициент корреляции r равен 0.93, а связь между J0 и dN2m имеет вид:
J0(0.1 < E < 1.5 ГэВ) = (19715 ± 239)?dN2m + (216± 11), (2) где [J0] = м–2.с–1.ср–1 и [dN2m]= см–2.с–1.ср–1.
Вклад частиц альбедо в величину J0, найденную по данным телескопа, незначителен. В максимуме кривых поглощения в атмосфере так же, как и на ее границе частицы распределены изотропно в верхней полусфере [3] и геометрический фактор телескопа равен Гтел = 17.8 cм2.ср.
Рис. 5а. Корреляционная связь между значениями первичных потоков космических лучей J0(Е > 0.1 ГэВ), полученными методом экстраполяции за период 07.1957–12.2004, и потоками частиц N1m, регистрируемыми одиночными счетчиками в максимумах высотных кривых в атмосфере на широте с Rc = 0.6 ГВ. Прямая линия проведена методом наименьших квадратов.
Рис. 5б. То же, что на рис. 5а, для данных, полученных с помощью телескопа на широте с Rc = 0.6 ГВ за период 01.1960–12.2004.
Аналогичные корреляционные связи между экстраполированными значениями интегральных потоков по энергии J0(Е > 0.1 ГэВ) и величинами потоков космических лучей N1m и N2m в максимумах высотных кривых можно найти для полярных широт (Rc = 0.6 ГВ). Эти связи показаны на рис. 5а, б. Для данных, полученных с помощью одиночного счетчика, коэффициент корреляции r равен 0.99, и связь между J0 и N1m имеет вид:
J0(E > 0.1 ГэВ) = (1893 ± 12)?N1m – (2778 ± 32), (3) где [J0] =м–2.с–1.ср–1 и [N1m]= cм–2.ср–1. Для данных, полученных с помощью телескопа, коэффициент корреляции r = 0.98, и связь между J0 и N2m имеет вид:
J0(E > 0.1 ГэВ) = (13051 ± 98)?N2m – (2698 ± 39), (4)
где [J0] = м–2.с–1.ср–1 и [N2m]= cм–2.с–1.ср–1.
Значения J0(0.1 < E 0.1 ГэВ), полученные методом экстраполяции данных одиночного счетчика и телескопа к границе атмосферы, должны в пределах ошибок совпадать со значениями, полученными из соотношений (1)–(4).
В таблицах 3–27 приведены среднемесячные значения потоков заряженных частиц, измеренных в максимумах кривых поглощения космических лучей в атмосфере, для станций и периодов наблюдений, указанных в таблице 1, в таблицах 3–15 приводятся значения потоков по данным одиночных счетчиков, в таблицах 16–27 представлены потоки по данным телескопов. В таблицах 28–30 приведены среднемесячные значения потоков γ-квантов, измеренные кристаллом NaJ(Tl).
В таблицах 31–32 представлены среднемесячные значения потоков первичных космических лучей на границе атмосферы J0 для частиц с энергией Е ? 0.1 ГэВ и в интервале энергии 0.1 ? Е ? 1.5 ГэВ. Значения J0 получены двумя способами: 1) экстраполяцией к границе атмосферы данных одиночного счетчика и телескопа и 2) вычислением J0 по формулам (1)–(4) c использованием величины потоков частиц в максимумах кривых поглощения в атмосфере. В таблицах 31–32 даны усредненные значения J0. Настоящий препринт и экспериментальные данные (dct nf, kbws) также находятся на сайте http://sites.lebedev.ru/DNS_FIAN/.
Список литературы
1. Чарахчьян А.Н. Исследование флуктуаций интенсивности космических лучей в стратосфере, вызываемых процессами на Солнце. УФН, 1964, т. 83, вып. 1, с. 35-62.
2. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Космические лучи в стратосфере и околоземном пространстве в период 19-го и 20-го циклов солнечной активности. Труды ФИАН, М.: Наука, 1976, т. 88, с. 3-50.
3. Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Планетарное распределение интенсивности космических лучей по измерениям в стратосфере. Труды ФИАН, М.: Наука, 1980, т. 122, с. 3-14.
4. Bazilevskaya G.A., Krainev M.B., Stozhkov Yu.I., Svirzhevskaya A.K., Svirzhevsky N.S. Long-term Soviet program for the measurement of ionizing radiation in the atmosphere. Journal of Geomagnetism and Geoelectricity, 1991, v. 43, Suppl., p. 893-900.
5. Стожков Ю.И., Свиржевский Н.С., Базилевская Г.А., Махмутов В.С., Свиржевская А.К. Исследования космических лучей в атмосфере Арктики и Антарктики. Арктика и Антарктика. М.: Наука, 2004, вып. 3 (37), с. 114-148.
6. Чарахчьян А.Н., Базилевская Г.А., Квашнин А.Н., Чарахчьян Т.Н. Фотонная компонента космических лучей в атмосфере. Труды ФИАН, М.: Наука, 1976, т. 88, с. 51-79.
7. Stozhkov Y.I., Svirzhevsky N.S., Makhmutov V.S., Svirzhevskaya A.K. Long-term cosmic ray observations in the atmosphere. Proc. 27th ICRC, Hamburg, Germany, 2001. Hamburg: Copernicus Gesellshaft, 2001, v. SH, p. 3883-3886.
8. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Альбедо космических лучей в околоземном пространстве. Геомагнетизм и аэрономия, 1974, т. 14, № 3, с. 411-416.
9.Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Альбедо космических лучей по измерениям в стратосфере. Изв. АН СССР, сер. физ., 1978, т. 42, № 5, с. 997-1006.
Для подготовки данной работы были использованы материалы с сайта http://www.kosmofizika.ru