85452 (764041), страница 2
Текст из файла (страница 2)
Для случайной величины имеет место
,
.
Перейдем от случайной величины к стандартной нормально распределенной случайной величине
.
Тогда
.
Учитывая (6) и (7), получаем:
Например, при
.
Отсюда значение случайной величины
определится по формуле
, (8)
где — значения случайной величины
, равномерно распределенной на отрезке
.
Таким образом, имея 12 значений случайной величины и подставляя их в формулу (8), получаем значение случайной величины
имея следующие 12 значений величины
и подставив их в формулу (8), получим следующее значение случайной величины
и т. д.
Список литературы
1. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высш. шк., 2001.
2. Кретов М.В. Вероятностные методы оценки прочности строительных материалов // Международная научная конференция «Инновация в науке и образовании—2003». Калининград, 2003. С. 228.
3. Кретов М.В. Теория вероятностей и математическая статистика. Калининград: Янтарный сказ, 2004.
4. Нейман Ю. Вводный курс теории вероятностей и математической статистики. М.: Наука, 1968.
Для подготовки данной работы были использованы материалы с сайта http://old.albertina.ru/