85140 (763962)

Файл №763962 85140 (Закон Ома электропроводности металлов как фундаментальное следствие нетеплового действия электрического тока)85140 (763962)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Закон Ома электропроводности металлов как фундаментальное следствие нетеплового действия электрического тока

В.В. Сидоренков, МГТУ им. Н.Э. Баумана

Введение.

При взаимодействии металлов с электромагнитным полем главную роль играет их высокая электропроводность, поэтому важным аспектом анализа указанного взаимодействия является выяснение физической природы отклика проводящей среды на наличие в ней электрического тока, нетривиально проявляющего себя за счет своего нетеплового действия. Впервые эксперименты по исследованию нетеплового влияния электрического тока на физические свойства металлов были проведены Г. Вертгеймом [1] еще в 1844 г. По удлинению проволочных образцов различных металлов при постоянной внешней механической нагрузке в условиях пропускания электрического тока (j ~ 107…108 А/м2) либо только при термическом воздействии и одной и той же температуре образца определялись соответственно модули упругости G1 и G2 исследуемого материала. Наличие разности ΔG = |G1 – G2| служило доказательством дополнительного нетеплового действия электрического тока на величину модуля упругости металла. Эти исследования считаются уникальным физическим экспериментом, и именно Вертгейму принадлежит приоритет открытия явления упорядоченного механически напряженного состояния металла, возникающего в процессе электропроводности.

В настоящее время указанный феномен исследуется в основном с целью применений на практике электропластического разупрочнения металлов под действием электрического тока высокой плотности j ~ 108…109 А/м2 [2, 3]. Однако дискуссия о природе этого сложного и многогранного явления продолжается и отражена во многих публикациях (например, в [2–7]). В частности, в данной работе дается ответ на физически принципиальный вопрос о связи гальваномеханических деформаций (нетепловых деформаций под действием тока) с электрическим полем в металле при электропроводности.

Уравнение энергетического баланса процесса электропроводности в металлах.

Оставаясь в рамках теории Друде электрической проводимости металлов [8], рассмотрим уравнение энергетического баланса для металлического проводника при наличии в нем электрического тока в следующем приближении:

. (1)

Здесь представлены зависящие от плотности тока объемные плотности тепловой энергии wТ, потенциальной энергии электрического поля we и кинетической энергии дрейфового движения электронов wj .

Тепловая энергия, выделяющаяся с течением времени в единице объема проводника с электрическим током, описывается законом Джоуля-Ленца:

, (2)

где σ – удельная электрическая проводимость материала. Эта энергия равна работе сторонних сил, постоянно совершаемой над электронами проводимости в их дрейфовом движении, причем приращение внутренней энергии проводника проявляется в его нагреве.

Объемную плотность электрической энергии /2, связанную с присутствием в проводнике при электропроводности электрического поля, найдем, учитывая закон Ома и поле электрического смещения в таких условиях

, где – относительная диэлектрическая проницаемость, 0 – электрическая постоянная. В результате энергия электрической поляризации проводника под действием тока запишется в виде

. (3)

Физический смысл коэффициента τ определяется с учетом теоремы Гаусса: , где – объемная плотность электрического заряда, из уравнения непрерывности , решение которого описывает закон релаксации заряда в проводящей среде. Следовательно, есть постоянная времени релаксации электрического заряда (далее ) для данного материала.

Поскольку электрический ток представляет собой упорядоченное движение носителей заряда ненулевой массы, то в проводнике присутствует также кинетическая энергия дрейфового движения этих зарядов. Тогда для электронов проводимости металла получим:

, (4)

где учтены выражения для вектора плотности тока и удельной электрической проводимости [8]. Здесь me и e - масса и заряд электрона, n и - концентрация и дрейфовая скорость электронов проводимости, - среднее время свободного пробега электронов между столкновениями.

В итоге уравнение энергетического баланса процесса электропроводности в металле (1) запишется следующим образом:

. (5)

Видно, что при стационарном токе, в отличие от первого слагаемого , линейно нарастающего во времени, два других, и от времени не зависят и соотносятся друг с другом в соответствии с численными значениями временных коэффициентов и . Определяемый аналитически коэффициент для металлов при комнатной температуре [8] по порядку величины равен 10–13…10–14 с, а значение , cогласно [8, 6], примем ~ 10– 6 с. Несмотря на то, что wj численно меньше на 7-8 порядков, тем не менее, это слагаемое важно физически, так как отвечает за магнитную энергию проводника с током, и только оно сохраняется при переходе к сверхпроводимости, когда . Поскольку в рамках классической электродинамики физический механизм возникновения магнитного поля тока объяснятся лишь формальным релятивизмом (истинный магнетизма – это спиновый магнетизм), то далее этот вопрос не обсуждается.

Таким образом, в случае нормального (несверхпроводящего) металла энергетика процесса электропроводности количественно в основном определяется тепловой и электрической энергиями, поставляемыми источником стороннего поля, причем физический механизм их реализации един и обусловлен передачей ионам кристаллической решетки проводника энергии упорядоченного движения электронов проводимости.

Деформационная поляризация металлов под действием электрического тока.

В контексте рассматриваемого вопроса главной целью является выяснение природы электрической энергии , запасаемой в проводнике с током. Прежде всего, отметим, казалось бы, парадоксальную ситуацию, когда из закона Ома электропроводности металлов (где

- вектор плотности тока, а - вектор электрической напряженности) следует странный на первый взгляд вывод о том, что данный закон подчиняется архаичному принципу Аристотелевой механики, согласно которому v ~ F. Очевидно, что в рамках общепринятой механики Ньютона парадокс отсутствует лишь при условии равенства нулю суммарной силы действия на электроны проводимости, то есть существует некая ответная сила, компенсирующая действие поля сторонних сил источника электрического тока. Таким образом, необходимо выяснить, прежде всего, механизм возникновения поля этой некой силы в металлическом проводнике.

Покажем, что закон Ома электропроводности обусловлен откликом среды на нетепловое воздействие со стороны электрического тока и проявляет себя в виде электрической поляризации металла. Представления о векторе электрической поляризации вещества как дипольном моменте единицы объема в линейном приближении, прямо пропорциональном напряженности электрического поля: (| | - плечо диполя), приводят к выражению

, (6)

позволяющему описать электрическое поле в металлической среде при ее поляризации; металл здесь рассматривается как диэлектрик с предельно большой восприимчивостью. В общем случае соотношение (6) является тензорным, но применять тензорную запись в наших рассуждениях нет необходимости.

В однородной проводящей среде значение объемной плотности заряда при квазистационарной ( ) электропроводности близко к нулю, поэтому процесс электрической поляризации металла в таких условиях будет протекать в локально электронейтральной среде, когда . Физически поле E(lj) обусловлено законом сохранения импульса в системе “электронный газ – ионный остов” кристаллической решетки проводника, где при наличии тока “центры масс” положительных и отрицательных зарядов в атомах смещаются относительно друг друга, создавая тем самым деформационную поляризацию среды. При этом индуцируемое в проводнике электрическое поле уравновешивает поле сторонних сил и в указанных условиях результирующая сила, действующая на дрейфующие со скоростью электроны проводимости, равна нулю, что и определяет линейную зависимость j ~ E. Аналогией этому может служить, например, установившееся движение твердой частицы при падении ее в вязкой жидкости в поле силы тяжести.

Целесообразно отметить, что вывод об отсутствии в однородном проводнике с током объемного электрического заряда следует из предположения справедливости при электропроводности закона Ома, когда j ~ E. При этом игнорируется воздействие собственного магнитного поля тока на движущиеся носители заряда посредством магнитной компоненты силы Лоренца , величина которой в такой ситуации является квадратичной функцией тока. Здесь - вектор магнитной индукции, зависящий от соответствующей напряженности, - относительная магнитная проницаемость среды, 0 - магнитная постоянная. Это обстоятельство должно приводить к нарушению локальной электронейтральности среды ( ) за счет ухода вглубь проводника части электронов проводимости, где их кулоновское отталкивание компенсируется действием магнитного поля тока. Данный вопрос подробно рассмотрен в работах [9, 10], поэтому ограничимся только этим замечанием.

Однако именно таким нарушением электронейтральности можно объяснить наблюдаемую в условиях, близких к изотермическим, квадратичную нелинейность вольтамперной характеристики медного проводника на постоянном токе [6], аппроксимируемую строгой аналитической зависимостью , в которой квадратичное по току слагаемое заметно проявляет себя при плотности тока j ~ 108 А/м2 и более. Поэтому при обычной плотности тока j << 108 А/м2 эта нелинейность не может существенным образом повлиять на результаты наших рассуждений, что подтверждают также и выводы проведенного выше анализа уравнения энергетического баланса процесса электропроводности (5).

Сопоставляя соотношение (6) с законом Ома , получаем формулу указанного выше динамического смещения “центров масс” разноименных зарядов

, (7)

вызывающего деформационную электрическую поляризацию металлического проводника с током. Интересно, что последнее соотношение (7) аналогично по виду формуле для среднего значения “длины свободного пробега” электронов проводимости в металле: , где vT - их средняя тепловая скорость. Таким образом, процесс электрической проводимости порождает в металле электронейтральные микрообласти ( ), образно говоря, “полярные молекулы”, с дипольным моментом , ориентированным коллинеарно направлению тока.

Фундаментальность величины динамического смещения , по сути свой “длина релаксации” заряда в проводнике, состоит в том, что на участках проводника такой длины падение электрического напряжения (разность электрических потенциалов)

Характеристики

Тип файла
Документ
Размер
658,69 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6361
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее