84955 (763925)

Файл №763925 84955 (О методике решения задач на относительность движения при изучении основ кинематики в 9 классе общеобразовательной школы)84955 (763925)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

О методике решения задач на относительность движения при изучении основ кинематики в 9 классе общеобразовательной школы

Петровых Н.П., Горбанева Л.В. (кафедра общей физики ХГПУ)

Одним из сложных и недостаточно разработанных вопросов методики физики является методика решения задач на относительность движения. Анализ специальной литературы и имеющийся практический опыт убеждают в том, что учащиеся школы и студенты не умеют решать задачи на относительность движения. В методических пособиях предлагается преимущественно логические приемы решения, иллюстрируемые иногда рисунками.

Мы предлагаем способ решения задач на относительность движения, который позволяет конкретизировать представления учащихся и студентов о законе сложения скоростей и перемещений, о понятии неподвижной системы отсчета (НСО) и подвижной системы отсчета (ПСО). Учит определять скорости, перемещения тел относительно различных систем отсчета (СО) и другие величины, убеждает в относительности скорости и перемещения тел.

Сущность предлагаемого способа решения задач сводится к следующему алгоритму:

Анализ условия задачи, выделение движущихся тел. Краткая запись условия задачи. Определение неподвижной и подвижной системы отсчета (НСО и ПСО), движущегося тела.

Записать закон сложения скоростей или перемещений в векторной форме.

Изобразить графически параметры заданных движений, при этом выбрать начальный момент времени и совместить начало НСО и ПСО.

Отобразить на графике, который строится под первоначальным, изменение величин, описанных в задаче со временем.

Сравнение закона сложения скоростей (перемещений) и графика.

Записать закон сложения скоростей (перемещений) в проекциях на оси координат, объединив их в систему (или найти геометрическую сумму путем сложения векторов).

Решить полученную систему уравнений. Подставить в решение общего вида значения величин и произвести вычисления.

На примерах решения типовых задач на относительность движения покажем применение данного способа решения.

Задача № 1.

Два поезда движутся равномерно друг за другом. Скорость первого 80 км/ч, а второго 60 км/ч. Какова скорость второго поезда относительно первого ?

1. Первый и второй поезда движутся относительно Земли с некоторыми скоростями. Скорость первого поезда V, скорость второго V2 (жирным шрифтом обозначены векторные величины).

Дано: Решение:

V = 80 км/ч За НСО примем Землю, за ПСО – первый поезд.

V2 = 60 км/ч Скорость ПСО относительно НСО – V.

V1 - ? Движущимся телом является второй поезд.

Скорость движущегося тела относительно НСО – V2.

Неизвестная скорость второго поезда относительно первого (ПСО) – V1.

2

рис.1

. Закон сложения скоростей V2 = V + V1. Скорость второго поезда относительно НСО равна геометрической сумме скорости второго поезда относительно ПСО и скорости ПСО относительно НСО.

3. Систему координат XY свяжем с Землей (НСО).

Систему координат X Y параллельную XY свяжем с первым поездом (ПСО)

В начальный момент времени (t = 0) совместим НСО и ПСО.

4. Через t = 1 час положение ПСО (первого поезда) изменится на расстояние, равное 80 км, а второго поезда, относительно НСО окажется на расстоянии 60 км.

рис. 2

5. Соотнесем график и формулу закона сложения скоростей V2 = V + V1. Убеждаемся в том, что обе формы отражения закона совпадают.

6. Для вычисления скорости второго поезда относительно первого найдем проекции и запишем:

V2x = Vx + V1x

V2y = Vy + V1y

V2 = V - V1

-V1 = V2 – V

V1 = V – V2

V1 = 80 км/ч - 60 км/ч = 20 км/ч

Ответ: скорость второго относительно первого поезда равна 20 км/ч.

Задача №2

Скорость течения реки V= 1,5 м/с. Каков модуль скорости V1 катера относительно воды, если катер движется перпендикулярно к берегу со скоростью V2 = 2 м/с относительно него.

1. Дано:

V= 1,5 м/с За НСО примем берег реки,

V2 = 2 м/с за ПСО – реку (скорость течения реки V),

V

рис. 3

- ? движущееся тело – катер.

2. Закон сложения скоростей V2 = V + V1. Скорость катера относительно НСО (берега реки) равна геометрической сумме скорости катера относительно ПСО (течения реки) и скорости течения реки.

3. Свяжем НСО с системой координат XY, а ПСО с системой координат X`Y`. Ось OX направим вдоль берега, а ось OY поперек реки (O`X` и O`Y` соответственно).

рис. 4

4.

5. Сравним закон сложения скоростей и графика. Для простоты решения найдем геометрическую сумму векторов скорости.

6. Так как полученный треугольник прямоугольный, то

Ответ: модуль скорости катера относительно реки 2,5 м/с.

Задача № 3

Два поезда движутся навстречу друг другу со скоростями 72 и 54 км/ч. Пассажир, находящийся в первом поезде, замечает, что второй поезд проходит мимо него в течение 14 с. Какова длина второго поезда ?

1 . Дано:

V1 =72 км/ч =20 м/с Так как движение поездов можно считать равномерным,

V2 = 54 км/ч = 15 м/с то длину второго поезда можно найти по формуле

l - ? l = V21 t, где V21 – скорость второго поезда относительно первого поезда. Значит, для определения l необходимо найти V21.

Примем за НСО Землю, а за ПСО – первый поезд, движущееся тело – второй поезд. V2 скорость второго поезда относительно НСО. Скорость ПСО - V1.

рис. 5

2. Закон сложения скоростей V2 = V2 1 + V1. Скорость второго поезда относительно НСО равна геометрической сумме скорости второго поезда относительно ПСО (первого поезда) и скорости ПСО (первого поезда).

3. 4.

рис.6

5. На графике V2 и V2 1 направлены в одну сторону, а V1 в противоположную,

тогда -V2 = V1 - V21

6 V2 1 = V1 + V2

l

рис.7

= (V1 + V2) t

l = (20 м/с + 15 м/с) 14 с = 490 м.

Ответ: длина второго поезда 490 м.

Задача № 4

Катер, двигаясь против течения реки, проплывает около стоящего на якоре буя и встречает там плот. Через 12 минут после встречи катер повернул обратно и догнал плот на расстоянии 800м ниже буя. Найти скорость течения реки.

Дано:

t = 12 мин = 720с НСО свяжем с буем, ПСО – плот (движущийся со скоростью

S = 800 м течения реки V0), движущееся тело – катер.

V0 - ? Скорость катера относительно НСО – V,

а относительно ПСО – V1.

Закон сложения скоростей для катера, движущегося по течению и против течения реки, в геометрической форме совпадает: V = V0 + V1. Скорость катера относительно НСО равна геометрической сумме скорости ПСО (течения реки) и скорости катера относительно ПСО.

Найдем скорость катера, двигающегося против течения реки

V = V0 + V1

- V = V0 - V1

V = V1 - V0

Аналогично найдем скорость катера, двигающегося по течению реки

V = V0 + V1

V = V0 + V1

Запишем уравнения движения плота и катера:

Sпл. = V0 t

Sк= S1 - S2 , где S1 – расстояние, пройденное катером по течению,

S2 – расстояние, пройденное катером против течения.

Sпл. = V0t

Sк = -( V1 - V0 ) t1 + (V0 + V1) (t – t1)

Расстояние, пройденное катером от буя до того места, где катер догнал плот, равно расстоянию пройденному плотом, то есть Sпл = Sк, то

рис. 10

V0 t = -( V1 - V0 ) t1 + (V0 + V1) (t – t1)

V0 t = -- V1 t1 + V0 t1 + V0 t + V1 t – V0 t1 - V1 t1

V1 t = 2 V1 t1

t = 2 t1

Ответ: скорость течения реки 0,55 м/с.

Задача № 5

Автоколонна длиной 2 км движется со скоростью 40 км/ч. Мотоциклист выехал из хвоста колонны со скоростью 60 км/ч. За какое время он достигнет головной машины ? Какой путь за это время пройдет мотоциклист относительно Земли ?

Д ано:

l = 2 км. Примем за НСО землю,

V1 = 40км/ч за ПСО – колонну, движущееся тело – мотоциклиста.

V2 = 60 км/ч Время, за которое мотоциклист догонит головную

t` - ? Sм.з. - ? машину , где V2 1 – скорость мотоциклиста

относительно ПСО (колонны)..

2. Закон сложения скоростей для данной задачи запишем в виде: V2 = V1 + V2 1. Скорость мотоциклиста относительно НСО равна геометрической сумме скорости колонны и скорости мотоциклиста относительно колонны.

3

рис. 11

. Отразим на рисунке – чертеже процесс, описанный в условии задачи.

Обозначим колонну прямоугольником, и совместим её конец (начало ПСО) с началом НСО в начальный момент времени (t = 0).

Укажем скорости V1 и V2 (рис. а).

4. Отразим геометрически закон сложения скоростей, выяснив, что произойдет через 1 час.

5. Сравним чертеж и формулу закона. Убедимся, что V2 = V1 + V2 1 соответствует геометрическому чертежу (рис. б).

6. Найдем проекции скоростей и вычислим время t` .

V2 = V1 + V2 1

V2 1 = V2 - V 1

Определить путь можно алгебраически по известной формуле ( S.=V t) и проиллюстрировать чертежом (рис. в, г ) при t = t1=0,1 ч.

По закону сложения перемещений Sм.з = Sк.з. + Sм.к

где Sм.з – перемещение мотоциклиста за 0,1 часа относительно Земли

Sм.к. - перемещение мотоциклиста за 0,1 часа относительно колонны,

Sк.з. – перемещение колонны за 0,1 часа относительно Земли.

Произведя вычисления Sм.з = 6 км.

Ответ: через 0,1 часа мотоциклист достигнет головной машины колонны, при этом пройдет путь 6 км.

Задача № 6

Эскалатор метро поднимает неподвижно стоящего на нем пассажира в течение 1 мин. По неподвижному эскалатору пассажир поднимается за 3 мин. Сколько времени будет подниматься идущий вверх пассажир по движущемуся эскалатору ?

Д ано:

tэ.з. = 1 мин. =60 с. Примем за НСО – Землю, за ПСО – эскалатор,

tч.э. = 3 мин. = 180 с движущееся тело – человек.

tч.з. – ? tэ.з. – время движения эскалатора относительно НСО,

tч.э. – время движения пассажира относительно ПСО,

tч.з. – время движения пассажира относительно НСО.

2. Запишем закон сложения скоростей Vч.з. = Vэ.з.. + Vч.э.. Скорость человека относительно НСО (идущего вверх по движущемуся эскалатору) равна геометрической сумме скорости эскалатора относительно НСО и скорости человека относительно ПСО ( неподвижному эскалатору).

3

рис. 12

рис. 13

.

4.

5. Vч.з. = Vэ.з.. + Vч.э.

Vч.з. = Vэ.з.. + Vч.э.

- скорость движения человека относительно эскалатора, - скорость движения эскалатора относительно Земли, - скорость движения человека относительно Земли. Подставив в полученную формулу, получим:

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее