84954 (763924)

Файл №763924 84954 (Некоторые вопросы геометрии вырожденных треугольников)84954 (763924)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Некоторые вопросы геометрии вырожденных треугольников.

Казакова Г.Г., доцент кафедры геометрии ХГПУ

Рисунок 1. Центроид треугольника

Применение методов векторной алгебры позволяет выявлять те особые свойства фигур, которые могут ускользнуть от нас при их наглядно-геометрическом рассмотрении, и при этом не потерять геометрическую наглядность изучаемого факта (как это часто бывает при применении метода координат).

Остановимся на некоторых фактах, связанных с геометрией треугольника, которые позднее будут применены к вырожденным треугольникам, что позволит получить интересные результаты.

Договоримся об обозначениях: точки будем обозначать заглавными буками обычным шрифтом (например: А, B) , а радиус-векторы точек (и обычные векторы) - жирным курсивом (например A, G, BC, b).

1. Центроид треугольника. Точка G пересечения медиан треугольника АВС называется его центроидом. Выразим радиус-вектор G центроида через радиус-векторы A, B, C вершин треугольника при любом выборе начала векторов - точки О.

По свойству медиан треугольника CG:GM=2 (смотри рис.1), следовательно G=(C+2M)/3, где М - середина стороны АВ, т.е. M=(A+B)/2. Итак,

G=(A+B+C)/3 (1)

Верно и обратное: если точки А, В и С не коллинеарны и имеет место условие (1), то точка G есть центроид треугольника АВС. В самом деле, пусть точка М - середина отрезка АВ, т. е. при любом выборе начала векторов О имеем M=(A+B)/2. Тогда из равенства (1) получим G=(C+2M)/3, т.е. G делит медиану СМ в отношении 2:1 и потому является центроидом треугольника АВС.

2. Ортоцентр треугольника. Прямая Эйлера. Если за начало векторов взять центр О описанной вокруг треугольника АВС окружности, то радиус-вектор ортоцентра Н (точки пересечения высот) этого треугольника равен

H = A+B+C (2)

Рисунок 2. Ортоцентр треугольника

В самом деле, векторы A+B и H-C (смотри рис.2) коллинеарны, значит, A+B = l(H-C).

По этой же причине B+C = m(H-A).

После почленного вычитания этих равенств получаем:

A-C = (l - m)H - lC + mA или

(1 - m)A + (l - 1)C + (m - l)H = 0

и при этом сумма коэффициентов

(1 - m) + (l - 1) + (m - l) = 0.

Выполнение двух этих условий возможно только в двух случаях:

либо когда точки А, С и Н коллинеарны (это невозможно по условию), либо когда

(1 - m) = (l - 1) = (m - l) = 0.

Значит, имеет место последнее:

m = l = 1

и тогда H = A+B+C.

Так как при любом выборе начала векторов точки О

G=(A+B+C)/3

то в данном случае G = H/3, т. е. точки О, G и Н коллинеарны и OG : GH = 1:2. Прямая OGH называется прямой Эйлера для треугольника АВС.

Теорема 1: Точки, симметричные ортоцентру треугольника относительно его сторон и середин сторон, лежат на окружности, описанной вокруг этого треугольника.

Рисунок 3.

Доказательство: Примем центр описанной окружности за начало радиус - векторов точек. Если точка Е1 симметрич­на Н относительно середины стороны ВС (смотри рис.3), то :

(B+C)/2 = (H+E1)/2, или

E1 = B + C - H = -A, т.е. точки A и E1 диаметрально противоположные и

E12 =A2 =R2.

Пусть прямая АН пересекает прямую ВС в точке К, а окружность - в точке Н1. Если ОД перпендикулярна ВС и ОF перпенди­кулярна АК, то:

K = D+F, D = (В+C)/2, F = (A+H1)/2 и, значит, K = (B+C+А+H1)/2 = (H+H1)/2 , т.е. Н1 симметрична точке Н относительно прямой ВС. Для точек Н2 и Н3 доказатель­ство аналогично.

Теорема 2: Во всяком треугольнике середины сторон, основания высот и три точки, делящие пополам отрезки высот от вершин до ортоцентра, лежат на одной окружности, называемой окружностью девяти точек треугольника.

Доказательство: За начало векторов примем центр О описанной около треугольника окружности (смотри рис.4). Обозначим через Оi середины сторон, через Нi основания высот, через Кi середины отрезков высот от ортоцентра до вершины (i =1, 2 ,3).

Если L - середина отрезка ОН, то

L = H/2 = (A + B + C)/2,

LO1 = O1 - L = (B + C)/2 -(A+B+C)/2 = -A/2,

LK1 = K1 - L = (A + H)/2 - H/2 = A/2.

Рисунок 4.

Таким образом, точки Оi и Кi (i =1, 2 ,3) симметричны относительно L, т.е. принадлежат окружности с центром L и радиусом, равным половине радиуса R описанной окружности, так как LO12 = LK12 = (±A/2)2 = R2/4. Углы ОiHiKi ( i=1, 2, 3) прямые и опираются на диаметры полученной окружности, а поэтому точки Hi этой окружности принадлежат. В дальнейшем остановимся на применении рассмотренных фактов к вырожденным треугольникам, т.е. таким треугольникам, у которых совпадает две или три вершины.

3. Треугольник с двумя совпавшими вершинами.

Если вершины В и С треугольника АВС совпали, то сторона ВС = а будет касательной к описанной около треуголь­ника окружности в этой точке, а длина стороны ВС будет равна нулю.

Итак, определить треугольник с двумя совпавшими вершинами (вырож­денный треугольник) можно двояко:

1) это хорда АВ окружности с одним двойным концом В;

2) это отрезок АВ и прямая, проходящая через его точку В.

В последнем случае описанная около треугольника АВС окружность касается прямой а в точке В, лежащей на ней. Такая окружность - единственная.

В полученном треугольнике с двумя совпавшими вершинами величина угла А равна нулю, а углы В и С - смежные, поэтому сумма внутренних углов треугольника равна 1800. Рассмотрим интерпретацию для данного треугольника свойств невырож­денного треугольника.

Так, при любом выборе начала О векторов G=1/3(A+2B), т.е. центроид G делит отрезок АВ в отношении л=2:1. Ортоцентр Н определится как тоже пересечение высоты АHi ^ а и двойной высоты, проходящей через точку В є С перпендикулярно к АВ. Если за начало векторов принять центр О описанной окружности, то Н = А + 2В (рис.5).

Итак, векторы G и Н коллинеарны и OG : GH = 1 : 2.

Применительно к данному случаю теорема 1 звучит следующим образом:

Если АВ - хорда окружности, а - касательная к ней в точке В и перпендикуляры из точки А к прямой а из точки В у прямой АВ пересекаются в точке Н, то точки Е, F и K, симметричные Н соответственно относительно а, В и середины АВ, принадлежат данной окружности (рис.5).

Рисунок 5

Для обычного треугольника имеет место теорема Симпсона:

ортогональные проекции точки окружности на стороны вписанного в нее треугольника лежат на одной прямой, называемой прямой Симпсона для данного треугольника.

Для треугольника вырожденного этот факт тривиален: точки М1 и М2 совпали, а две точки М1 є М2 и М3 всегда определяют прямую линию (рис.6).

Однако, так как ММ1В~ММ3А, (они прямоугольные и углы МВМ1 и МАМ3 измеряются половиной дуги МnB), то МВ : МА = ММ2 : ММ3 или МВ · ММ3 = МА · ММ2, т.е. получаем теорему 3:

Если АВ - хорда окружности и а - касательная к ней в точке В, то произведение расстояний произвольной точки окружности до точки касания и до хорды равно произведению расстояний этой точки до второго конца хорды и до касательной.

Рисунок 7

Теорема 2 (об окружности девяти точек треугольника) для вырожденного треугольника может быть сформулирована так:

Если АВ - хорда окружности, а - касательная к ней в точке В и перпендикуляры АH1 к прямой а и FB к прямой АВ пересекаются в точке Н (рис.5), то основания H1 и В этих перпендикуляров и середины отрезков АВ, АН и ВН лежат на одной окружности, радиус которой равен половине радиуса данной окружности.

Треугольник с тремя совпавшими вершинами (дважды вырожденный треугольник).

Рисунок 6

Такой треугольник можно задать с помощью точки А окружности (рис.7). В этом случае все три стороны совпадают, ибо А=В=С, и являются касательной а к окружности в точке А. Если за начало векторов принять центр О описанной окружности, то G=A и H=3A, т.е. ОАН - прямая Эйлера для вырожденного треугольника и OG:GH=1:2. Точка Н', симметричная Н относительно сторон и середин сторон вырожденного треугольника АВС, лежит на окружности (О,ОА), описанной около этого треугольника.

Чтобы выяснить положение прямой Симпсона, обратимся к рис.6. Так как РММ1В = РММ3В = 900 , то точки М1 є М2 и М3 принадлежат окружности диаметра МВ. Следовательно, если А=В, то прямая М1М3 Симпсона будет касательной в точке М1 к окружности диаметра МА=МВ (рис.7).

Окружностью девяти точек треугольника АВС является окружность, касающаяся описанной окружности в точке А (основание трех высот, середины трех сторон) и проходящая через середину отрезка НА, т.е. ее радиус равен половине радиуса данной окружности.

Список литературы

Майоров В.М., Скопец З.А. Векторное решение геометрических задач. М.- Просвещение, 1968.

Скопец З.А., Панарин Я.П. Геометрия тетраэдра и его элементов. Ярославль, 1974.

Для подготовки данной работы были использованы материалы с сайта http://www.khspu.ru

Характеристики

Тип файла
Документ
Размер
1,03 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6934
Авторов
на СтудИзбе
265
Средний доход
с одного платного файла
Обучение Подробнее