84949 (763919)
Текст из файла
Применение движений к решению задач
Бычек В. И., доцент кафедры геометрии ХГПУ
Рассмотрим применение простейших движений1 плоскости, таких как параллельный перенос, симметрия и вращение (поворот) при решении задач элементарной геометрии на вычисление и доказательство.
При решении задач используются основные свойства движения. Так, всякое движение переводит:
прямую в прямую, а параллельные прямые – в параллельные прямые,
отрезок – в отрезок, а середину отрезка – в середину отрезка,
луч – в луч,
угол – в равный ему угол,
точки, не лежащие на одной прямой – в точки, не лежащие на одной прямой,
полуплоскость – в полуплоскость.
З
Рисунок 1
В четырехугольнике ABCD (рис.1) AB =
, BC = 3, CD = 2
, BAD = CDA = 60. Найти углы ABC и BCD.
Решение. Рассмотрим параллельный перенос на вектор
.
Получим равнобедренную трапецию ABED, у которой AB = ED =
, а ABE =120. Тогда CE = CD – ED =
.
В треугольнике BCE имеем 9 = x2 + 3 – 2x
Cos60 (по теореме косинусов), где BE = x.
Отсюда x2 -
x - 6 = 0 и x = 2
. Замечая, что BE2 = BC2 + CE2, получим BCD = 90, а CBE = 30. Тогда ABC = 120 + 30 = 150.
ЗАДАЧА 2.
Пусть A1, B1, C1 – середины сторон треугольника ABC (рис.2), O1, О2, O3 – центры окружностей, вписанных в треугольники AC1B1, C1BA1, СВА1. Найти углы треугольника O1O2O3, если AB = 4, AC = 4
, BAC = 30.
Р
Рисунок 2
Сначала по теореме косинусов найдем сторону BC треугольника ABC: BC=4.
Следовательно, треугольник ABC будет равнобедренным и BCA=30. Рассмотрим параллельный перенос на вектор
. Так как
:AB1, B1C, C1A1, то
отображает треугольник AB1C1 в треугольник B1CA1. Тогда
:O1O3. Отсюда следует, что O1O3||AC. Аналогично рассмотрим параллельный перенос на вектор
и параллельный перенос на вектор
.
:O1O2 O1O2||AB,
:O3O2O2O3||BC.
Тогда O2O1O3=BAC=30 , O1O3O2 = BCA = 30, а O3O2O1=180-230=120.
ЗАДАЧА 3.
П
Рисунок 3
Решение.
Пусть M и H – середины сторон AB и CD (рис.3). Рассмотрим сначала параллельный перенос на вектор
и параллельный перенос на вектор
.
: D H, A A1, AD||A1H, AD = A1H;
:C H, BB1 BC ||B1H, BC=B1H. Так как по условию 1=2, а 1 =3 и 2=4 как накрестлежащие углы, то 3=4.
Затем рассмотрим центральную симметрию относительно точки M. Так как ZM : AB, то луч AA1 отобразится в луч BB1 , так как AA1 ||BB1||DC. ZM : A1B1, так как AA1 = DH = HC = BB1. В треугольнике A1B1H медиана MH является биссектрисой. Следовательно, треугольник A1B1H равнобедренный, т. е. A1H=B1H. Тогда и AB = CB.
ЗАДАЧА 4.
Д
Рисунок 4
аны две окружности 1(O1, r) и 2 (O2, r), пересекающиеся в точках M и H (рис.4). Прямая , параллельная прямой O1O2, пресекает окружность 1 в точках A и B , а окружность 2 в точках C и D . Доказать, что величина угла AMC не зависит от положения прямой , если лучи AB и CD сонаправлены и прямая пересекает отрезок MH.Решение.
П
Рисунок 5
.
:1(O1,r) 2(O2,r). Тогда
:MM1, AC, A1C1. Значит
:AMA1CM1C1. Следовательно, AMA1=CM1C1. Но CM1C1=CMC1 как вписанные углы, опирающиеся на одну и ту же дугу CC1. Тогда AMA1=CMC1=AMC=A1MC1.ЗАДАЧА 5.
Доказать, что точки, симметричные ортоцентру треугольника ABC относительно прямых AB, AC, BC, принадлежат описанной около треугольника ABC окружности.
Решение.
Пусть окружность (O,r) описана около треугольника ABC, а H – его ортоцентр, т. е. H – точка пересечения высот треугольника ABC (рис.5). Рассмотрим осевую симметрию относительно прямой BC. SBC : BB, CC, HH1. Значит SBC: CHCH1, BHBH1, СHBCH1B. Следовательно, СHB =СH1B. Так как в четырехугольнике AC1HB1
Рисунок 6
AC1H=AB1H=90, то BAC+С1HB1=180. Тогда в четырехугольнике ABH1C имеем BAC+BH1C=BAC+BHC+BAC+C1HB1=180, т. е. точка H1 принадлежит окружности (O,r). Аналогично, рассматривая SAB и SAC, получим, что точки H2 и H3 принадлежат окружности (O,r).ЗАДАЧА 6.
Точки C1 и С2 являются образами вершины С треугольника ABC при симметрии относительно прямых. Содержащих биссектрисы углов BAC и ABC (рис.6).Доказать, что середина отрезка C1C2 есть точка касания вписанной в треугольник окружности и сторон AB.
Решение.
Пусть 1 и 2 – прямые, содержащие биссектрисы углов BAC и ABC, а H, K, M – точки касания вписанной окружности (O,r) со сторонами AB, BC, AC. Рассмотрим осевую симметрию относительно прямой 1. S1 : ACAB, CC1. Следовательно, C1AB. Так как O1, то 1 – ось симметрии окружности . Тогда S1: MH. Так как S1 : CC1, MH, то S1 : CMC1H. Следовательно, CM = C1H.
Рисунок 7
Аналогично, рассматривая осевую симметрию относительно прямой 2, получим CK = C2H. По свойству касательных, проведенных из внешней точки C к окружности , имеем CM=CK. Тогда C1H=C2H, причем точки C1, C2, H принадлежат прямой AB. Следовательно, H – середина отрезка С1С2.ЗАДАЧА 7.
Дан равнобедренный треугольник ABC, в котором AB = BC, ABC = 30. На стороне BC взята точка D так, что бы AC: BD =
: 1. Найти угол DAC (рис.7).
Решение.
Рассмотрим осевую симметрию относительно серединного перпендикуляра MH к стороне AB. SMH:BA, DD1, MM. Значит SMH:BDAD1, MBDMAD1. Следовательно, BD=AD1, DD1||AB, MAD1=MBD=30. Так как BAC=BCA=75, то D1AC=45. По условию AC:BD=
:1. Тогда AC:AD1=
:1. На прямых AC и AD1 построим точки C2 и D2 такие, что AC2=
, AD2=1. Тогда в треугольнике AC2D2 имеем
D2C22=AC22+AD22–2AC2AD2Cos45 =1.
Отсюда D2C2=1, т. е. треугольник AD2C2 является равнобедренным, а это значит, что AC2D2=45, AD2C2=90. Так как треугольники ACD1 и AC2D2 подобны, (D1AC – общий, AC:AD1=AC2:AD2=
:1), то ACD1=45, AD1C=90. Так как DD1||AB, D1DC=ABC=30, то DCD1=BCA- D1CA=75-45=30. Следовательно, в равнобедренном треугольнике CD1D CD1D = 120. Тогда AD1D=360 - (90 +120) = 150. Так как AD1=D1C=DD1, то в равнобедренном треугольнике AD1D
Рисунок 8
Получим DAC=D1AC+D1AD=45+15=60.
ЗАДАЧА 8.
Даны две окружности 1(O1,r) и 2(O2,r), каждая из которых проходит через центр другой. Через точку А пересечения окружностей проведена прямая, пересекающая окружности в точках M и H. Найти угол между касательными, проведенными к окружностям в точках M и H (рис.8).
Решение.
Пусть 1 – касательная к окружности 1 в точке H, а 2 – касательная к окружности 2 в точке М. В треугольнике O1BO2 имеем O1O2=O1B=O2B. Аналогично O1O2=O1A=O2A в треугольнике O!AO2. Тогда BO1A=BO2A=120. Отсюда следует, что BO2A=BO1A=120. В треугольнике MBH получим BMA=BHA=60. Тогда MBH=60. Рассмотрим поворот вокруг точки В на угол 600. RB60:O1O2, MH. Значит RB60:O1MO2H. Тогда RB60:12, так как по свойству касательной 1 O1M, 2 O2H. Следовательно, угол между прямыми 1 и 2 равен 60.
ЗАДАЧА 9.
На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что CD = CE (рис.9). Прямые, проведенные через точки D и C перпендикулярно к AE, пресекают гипотенузу AB соответственно в точках К и H. Доказать, что KH = HB.
Р
Рисунок 9
Рассмотрим поворот вокруг точки C на 90. RC90:A B, DE, EE1, CC. Значит RC90:AEBE1, CECE1. Следовательно, AEBE1, CE = CE1. Так как CD=CE, то CD=CE1. По условию DKAE и CHAE. Тогда BE1||CH||DK. По теореме Фалеса имеем BH=HK.
ЗАДАЧА 10.
В
Рисунок 10
прямоугольном треугольнике АВС проведена медиана СМ. На катетах АС и ВС вне треугольника построены квадраты АСКН и ВСДЕ. Доказать, что прямые СМ и ДК перпендикулярны. (Рис. 10)Решение.
Рассмотрим поворот вокруг точки С на 900:
Следовательно, . Тогда В треугольнике АВК1 отрезок СМ является средней линией, поэтому СМ//ВК1. Тогда , так как .
ЗАДАЧА 11.
Доказать, что биссектрисы внутренних углов параллелограмма при пересечении образуют прямоугольник.
Р
Рисунок 11
Пусть дан параллелограмм АВСД (рис. 11), АА1, ВВ1, СС1 и ДД1 – биссектрисы его внутренних углов; К, Н, М, Р – точки их пересечения. Надо доказать, что четырехугольник КНМР является прямоугольником. Рассмотрим поворот вокруг точки пересечения диагоналей параллелограмма на 1800, то есть центральную симметрию относительно точки
.
.
Тогда
. Следовательно, четырехугольник КНМР – параллелограмм, так как его диагонали в точке пересечения делятся пополам. В параллелограмме АВСД имеем:
. Значит
. Тогда в треугольнике АВК найдем
. В параллелограмме КНМР получили
, следовательно этот параллелограмм – прямоугольник.
З
Рисунок 12
АДАЧА 12.Дан равносторонний треугольник АВС и произвольная точка М (рис.12). Доказать, что длина большего из трех отрезков МА, МВ, МС не больше суммы длин двух других.
Решение.
Пусть ВМ – наибольший из указанных отрезков. Рассмотрим поворот вокруг точки В на 600.
. Тогда . Поэтому АМ=СМ1, ВМ=ВМ1. Следовательно, треугольник МВМ1 будет равносторонним. Поэтому МВ=ММ1. Но в треугольнике МСМ1: ММ1<МС+СМ1=МС+МА, то есть МВ<МС+МА. Равенство будет в том и только в том случае, когда точка М лежит на окружности, описанной около треугольника АВС.
Дополнительно о возможностях использования движений при решении геометрических задач можно прочитать в приведенной ниже литературе.
Список литературы
Атанасян Л.С., Базылев В.Т. Геометрия. Ч. 1. – М. Просвещение, 1986.
Атанасян Л.С., Атанасян В.А. Сборник задач по геометрии. Ч. 1. – М., Просвещение, 1973.
Базылев В.Т., Дуничев К. И., Иваницкая В.П. Геометрия. Ч. 1. – М. Просвещение, 1974.
Вересова Е.Е., Денисова Н.С. Сборник задач по геометрическим преобразованиям.- М.: МГПИ им. В.И. Ленина, 1978.
Для подготовки данной работы были использованы материалы с сайта http://www.khspu.ru
1 Движением называется преобразование плоскости, сохраняющее расстояние между любыми двумя точками.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.














