84811 (763892)

Файл №763892 84811 (Градиентный алгоритм для систем независимости с отрицательными весами)84811 (763892)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Градиентный алгоритм для систем независимости с отрицательными весами

И.В. Оффенбах, Омский государственный университет, кафедра прикладной и вычислительной математики

1. Основные понятия

Пусть E - конечное множество, - непустое семейство его подмножеств. Семейство называется системой независимости, если

Множества семейства называются независимыми множествами, а подмножества E, не вошедшие в семейство , - зависимыми. Базой множества называется любое максимальное по включению независимое подмножество F. Базы множества E называются базами системы независимости. Множество всех баз будем обозначать . Введем обозначения:

Числа lr(F), ur(F) называются соответственно нижним и верхним рангом множества F. Величина

называется кривизной системы независимости (минимум берется по всем ). Очевидно, что для любой системы независимости .

Рассмотрим задачу максимизации на системе независимости:

где - семейство баз системы независимости , а - аддитивная весовая функция.

Для решения задачи (1) применим следующий Алгоритм A:

Шаг 0: Упорядочить множество по невозрастанию весов; ;

Шаг i: . Если , то ; если i < n, то перейти на шаг i+1, иначе результат SA. Алгоритмы такого типа в англоязычной литературе имеют наименование greedy, что обычно переводится как жадный. Жадный алгоритм является дискретным аналогом градиентного алгоритма, поэтому его называют также градиентным алгоритмом.

Договоримся далее через SA обозначать результат работы алгоритма A на системе независимости , а через S0 - базу максимального веса

Алгоритм A в общем случае не находит оптимального решения и может рассматриваться лишь как приближенный метод решения задачи (1). В связи с этим большой интерес представляет получение оценок погрешности градиентного алгоритма.

В работе [1] (см. также [2]) получена следующая нижняя оценка погрешности градиентного алгоритма решения задачи (1).

Теорема 1 (Корте и Хаусманн). Пусть - произвольная система независимости. Тогда для любой неотрицательной аддитивной весовой функции задачи максимизации (1) имеет место достижимая оценка

где k - кривизна системы .

Cистема независимости называется матроидом, если семейство ее баз обладает следующим свойством:

В дальнейшем нам понадобится следующая

Лемма 1.

Доказательство. При lr(E)=ur(E) лемма, очевидно, следует из определения матроида.

Рассмотрим случай lr(E) . Перенумеруем элементы и так, что если среди них есть одинаковые, то они имеют первые m номеров ( ), иначе m=0. Определим где r=ur(E).

Шаг 0: Am=A - база. Шаг i: . Am+i-1 - база, следовательно, множество независимо и не база. Если - не база, то мы нашли требуемые базы Am+i-1, B и элемент u=am+i. Иначе пусть - база. Переход на шаг i+1.

Учитывая, что A|B| зависимо (т.к. B - база и ), алгоритм завершится не позднее, чем на шаге |B|+1 доказательством леммы.

2. Характеристика и ее свойства

Фронтом данного независимого множества F назовем .

Fr(F) - это множество элементов, каждый из которых может быть добавлен к F без нарушения его независимости. Именно из этих элементов градиентный алгоритм выберет на очередном шаге самый "тяжелый" для добавления к F.

Введем новую характеристику системы независимости:

Она характеризует "узкое место" в работе градиентного алгоритма.

Будем называть предбазами максимальные по включению независимые множества, не являющиеся базами. Тогда определение (4) можно записать как

поскольку каждое независимое подмножество, которое не является базой, содержится в некоторой предбазе и .

Теорема 2. 1) Для систем независимости , базы которых представляют собой все r-элементные подмножества (r-однородные матроиды),

где n=|E|, r=ur(E).

2) Для систем независимости, отличных от r-однородных матроидов,

Доказательство. 1) Очевидно, т.к. |Fr(F)|=n-|F|=n+1-ur(E) для любой предбазы F.

2) Если матроид (не r-однородный), то . Пусть F - база A. Т.к. |F|<|A|, то F не является базой матроида и .

Если не матроид, то по лемме 1 . Заметим, что .

Замечание. На различных системах независимости может принимать значения от 1 до n=|E| включительно, причем только в случае 1-однородного матроида.

Теорема 3 (оценка кривизны). Для любой системы независимости, отличной от 1-однородного матроида, имеет место оценка

Доказательство. Если система независимости представляет собой r-однороный матроид, , то k=1 и оценка (6) верна. Иначе , следовательно, и т.к. и ( ), то

Пусть дана система независимости , через (через ) обозначим такое минимальное число, что существует весовая функция , ровно ( ) значений которой отрицательны, и SA (S0) содержит по крайней мере один элемент с отрицательным весом.

Теорема 4. для любой системы независимости .

Доказательство. Пусть . Присвоим элементам множества F0 вес |E|, элементам Fr(F0) вес -1, а остальным элементам вес 0. Тогда SA и S0 будут содержать элементы с отрицательным весом и, следовательно, и (всего отрицательных весов ).

Если число "отрицательных" элементов меньше , то SA и S0 не могут содержать элементов с отрицательным весом (для SA это очевидно. Если же S0 содержит "отрицательные", то рассмотрим подмножество его "неотрицательных" элементов C. В силу определения мы можем добавлять к C "неотрицательные" элементы, пока не получим базу, вес которой строго больше веса S0). Следовательно, и .

Замечание. Отрицательность здесь не играет принципиальной роли. Основной ее смысл в том, что выделяется класс "отрицательных" элементов, вес каждого из которых меньше веса любого "неотрицательного". К примеру, теорему 4 можно интерпретировать так: S0 и SA не содержат ни одного из наименьших по весу элементов.

3. Оценки погрешности градиентного алгоритма

Лемма 2. Пусть - произвольная система независимости, - весовая функция, допускающая отрицательные веса. Если при этом веса всех элементов SA неотрицательны, то справедлива оценка (2).

Доказательство. Рассмотрим новую задачу, в которой все отрицательные веса исходной задачи сделаем нулевыми, оставив тот же порядок элементов (для новой задачи используются обозначения c', S'A, S'0). Тогда S'A=SA, c'(S'A)=c(SA) и . А поскольку в новой задаче все веса неотрицательны, то теорема 1 справедлива и

Из теоремы 4 и леммы 2 непосредственно следует

Теорема 5. Пусть дана система независимости и весовая функция , количество отрицательных значений которой меньше, чем . Тогда

Теперь рассмотрим ситуацию, когда нет ограничения на число элементов отрицательного веса.

Хорошо известна теорема Радо-Эдмондса, которая утверждает, что если система независимости является матроидом, то для произвольной неотрицательной весовой функции градиентный алгоритм всегда находит точное решение задачи (1). Нетрудно показать, что этот результат остается верным и для случая, когда допускаются отрицательные веса.

Однако из следующей теоремы вытекает, что если система независимости отлична от матроида, то в общем случае невозможно получить оценку погрешности градиентного алгоритма.

Теорема 6. Если система независимости отлична от матроида, то для произвольных существует такая весовая функция , что и . Причем, если , то существует с этим же свойством.

Доказательство. Так как отлична от матроида, то по лемме 1 , |B|=lr(E), и . Рассмотрим два случая:

1) . Среди всех баз, которые являются подмножествами выберем максимальную по мощности базу C. Присвоим всем элементам вес, условно говоря, , элементам вес , а элементу u вес . Если S0 содержит u, то , иначе, очевидно, . А т.к. , то нетрудно понять, что .

2) . Среди всех баз, которые являются подмножествами , выберем базу C, для которой минимальна. Пусть v произвольный элемент . Присвоим элементам вес , элементу u вес , элементу v вес , а всем остальным элементам вес 0 (в этом случае ). Т.к. минимальна, то любая база, веса отличного от и не содержащая u, содержит v, поэтому .

В обоих случаях можно так упорядочить элементы равного веса, что SA=A и .

Замечание. Задачу максимизации с весами можно интерпретировать как задачу минимизации с весами (весовой функцией c'(e)=-c(e)). Теорема 6 показывает, что для любой системы независимости, отличной от матроида, и задачи минимизации на ней (все веса неотрицательные) в принципе не может существовать гарантированной оценки погрешности градиентного алгоритма.

Список литературы

Hausmann D., Korte B. Lower bounds on the worst-case complexity of some oracle algorithms // Discrete Math. 1978. V.24. N 3. P.261-276.

Korte B. Approximative algorithms for discrete optimization problems // Annals of Discrete Math. Amsterdam: North-Holland. 1979. V.4. P.85-120.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/

Характеристики

Тип файла
Документ
Размер
339,23 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов статьи

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее